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1. Introduction 

Since Markowitz (1952) set forth the central theory of portfolio selection, most asset 

pricing studies have been developed based on only the first and second moments of a return 

distribution. The Capital Asset Pricing Model (CAPM) of Sharpe (1964) and Lintner (1965) 

is an exemplar of mean–variance models, and it still serves as a theoretical benchmark to 

other subsequent asset pricing models, despite its empirical shortcomings. Most of the 

succeeding research has endeavored to relax the restrictive conditions involved in deriving 

the CAPM. Among other studies, by generalizing the simple one-period setting to a multi-

period one, Merton (1973) and Long (1974) extend the static CAPM to the intertemporal 

versions, respectively in continuous-time and discrete-time frameworks. 

Mean–variance portfolio analysis, to a great extent, relies on one of two critical 

assumptions: the quadratic utility of a representative agent in the economy, or the normally 

distributed returns of risky assets. If neither assumption can be satisfied, the mean–variance 

portfolio theory is valid only approximately, not exactly. Unfortunately, there is much 

evidence to suggest that both assumptions are violated. Although the quadratic utility is the 

simplest functional form to describe investor risk aversion, it is not appealing theoretically, 

since it cannot satisfy the assumption of decreasing absolute risk aversion.1 Further, there is 

multiple documentation that stock returns are not normally distributed; they are known to be 

both skewed and fat-tailed. More specifically, one stylized fact is that the distribution of 

aggregate stock returns exhibits negative skewness, while individual stock returns are often 

positively skewed (Albuquerque, 2012). Another stylized fact is that stock returns also 

display significant kurtosis (see Mandelbrot, 1963; Fama, 1965). All the evidence implies that 

the optimal portfolio selection cannot be characterized completely by mean and variance 

alone. 

Given the weakness of the mean–variance portfolio theory, the question arises of whether 

moments of higher order than the variance, in particular skewness and kurtosis of a return 

distribution, affect expected rates of return on risky assets as well. If it could be assumed that 

                                           
1 Decreasing absolute risk aversion is a widely accepted assumption, since it implies seemingly reasonable 
behavior such that one invests more in risky assets as one becomes wealthier.  
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risk-averse investors consistently prefer higher skewness and lower kurtosis, the observation 

that aggregate stock returns are negatively skewed and leptokurtic may be a source of 

systematic underestimation of the equity premium by the existing mean–variance models. To 

address these concerns, there has been a strand of literature that takes higher-order moments 

into account in equilibrium expected rates of return. Kraus and Litzenberger (1976) put forth 

the three-moment CAPM, incorporating the effect of skewness on valuation of risky assets, 

based on preference for positive skewness. The model shows that systematic skewness, rather 

than total skewness, is relevant to asset pricing, suggesting that the poor empirical 

performance of the traditional CAPM may be attributable to omission of systematic skewness. 

Though kurtosis and its effect on expected returns have attracted relatively little attention, the 

three-moment CAPM can be extended to include any number of higher-order moments 

without difficulty.2 Following their seminal work, more recent studies provide empirical 

evidence that higher-order moments of a return distribution play a significant role in pricing 

stocks. Harvey and Siddique (2000) and Dittmar (2002) show that an individual asset’s co-

moments with the aggregate market portfolio should be priced if the pricing kernel is 

assumed as a nonlinear function of the market return. Focusing on the third and the fourth 

moments, respectively, they also document empirical evidence that co-moments are indeed 

priced in the U.S. stock market. 

Although pricing of co-skewness and co-kurtosis is supported by both theoretical 

argument and empirical evidence, there appears to be little consensus about the use of asset 

pricing models with higher-order moments. This may be ascribed to two main weaknesses of 

the existing literature on co-skewness and co-kurtosis. One serious drawback is that none of 

the existing models explore intertemporal considerations for the pricing of higher-order 

moments in expected stock returns; they take only a static setting into account. However, the 

static asset pricing models are generally not consistent with investor optimization, unless the 

investment opportunities do not change over time, or at least vary in deterministic ways. With 

                                           
2 Though Kraus and Litzenberger (1976) argue that there is no reason to consider the fourth or higher-order 
moments in the model, kurtosis, unlike other moments of even higher order, is well worth considering, in that 
stock returns are observed to be highly leptokurtic. Kurtosis is known as a measure of heavy tails in a 
probability distribution, while it is difficult to deal with moments of higher order than kurtosis, since what they 
mean about the shape of a distribution is not clear. 
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a more realistic assumption of stochastic investment opportunities, asset pricing models could 

properly reflect long-term investors’ hedging demand against deterioration of investment 

opportunities in the valuation equation. The failure of the existing models to capture 

intertemporal hedging demands may undermine the importance of pricing of co-skewness 

and co-kurtosis, despite their theoretical basis. 

The other drawback of the existing literature is that it does not adequately address 

measurement errors in the estimation procedure. Most empirical asset pricing studies estimate 

their models using two-pass cross-sectional regressions, in which co-moments of higher order 

as well as betas are estimated in the first stage and then the estimated co-moments are used 

subsequently in the second-stage estimation. Since higher-order moments are more difficult 

to measure precisely than variance, larger measurement errors occur in the first-stage 

estimation for higher moment models than for mean–variance models. More importantly, 

larger errors in the first stage, combined with the fact that higher moment models include a 

larger number of estimates, can lead to huge estimation errors for the price of risk in the 

second stage. Even though the errors-in-variables problem should be handled more carefully 

for higher moment models to obtain consistent estimates in the second stage, existing 

empirical studies with co-moments of higher order have not paid close attention to this matter. 

This may lead to biases in the cross-sectional estimation results that are possibly much larger 

than in the mean–variance models. 

This paper extends the literature by incorporating the effects of both higher-order 

moments and stochastic investment opportunities on expected stock returns in a theoretical 

model, and by overcoming the difficulty related to the errors-in-variables problem in 

estimating the model. Specifically, we present an intertemporal asset pricing model with the 

assumption that returns of risky assets could have any distribution with non-zero and finite 

skewness and kurtosis. The resulting pricing equation encompasses the three- and four-

moment static CAPM, as well as the traditional CAPM. In addition, our model encompasses 

the intertemporal CAPM based on mean–variance optimization. We also estimate our asset 

pricing model based on a generalized two-stage procedure that can handle the errors-in-

variables problem in the higher-order moment model. The estimation results using U.S. stock 

market data produce empirical evidence supporting our theoretical model. We further explore 
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implications of the model on various asset pricing anomalies unexplained by a mean–

variance trade-off. 

Our theoretical findings are summarized as follows. We propose a four-moment 

intertemporal asset pricing model in a discrete-time framework with the assumptions that (i) a 

representative investor has preference for high skewness and low kurtosis, (ii) the investment 

opportunities available to investors are stochastic, and (iii) the joint probability distribution of 

future wealth and state variables has finite fourth- and lower-order moments. We find that, in 

equilibrium, the expected rate of return on a risky asset is proportional to the asset’s 

covariance, co-skewness, and co-kurtosis with market returns, consistent with the results of 

Harvey and Siddique (2000) and Dittmar (2002). Further, the expected return on a risky asset 

should include extra premiums for the asset’s covariance with each state variable, co-

skewness with the market returns and each state variable, and co-kurtosis with the squared 

market returns and each state variable, due to the stochastic investment opportunities. The 

return premiums for co-skewness and co-kurtosis related with state variables indicate that 

investors require compensation for an increase in systematic risk and a decrease in systematic 

skewness associated with deterioration of investment opportunities. 

We document empirical evidence supporting the predictions of the four-moment 

intertemporal CAPM using U.S. stock market data. Specifically, using daily returns of 

individual stocks during the period 1926 to 2012 and various state variables as a proxy for 

future investment opportunities, we investigate whether higher-order co-moments are indeed 

priced in the cross-section. Via both portfolio sorts and cross-sectional regressions, we find 

strong and robust evidence that systematic skewness is significantly priced, and that the price 

of systematic skewness is negative. This is consistent with theoretical predictions based on 

skewness preference, as well as previous empirical results in the literature. Moreover, we find 

that the third-order co-moment with the market return and each state variable has a significant 

and negative price when the state variable predicts good states, as in the case of the term 

spread and the HML factor. This can be interpreted as that such state variables are related to 

variations in risk aversion, and that higher return is required on a stock with lower co-

moment as compensation for an increase in systematic risk associated with a rise in risk 
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aversion. However, premiums for systematic kurtosis and most of the fourth-order co-

moments become insignificant after inclusion of systematic variance and skewness. 

We also explore time-series and cross-sectional implications of the four-moment ICAPM 

for asset pricing anomalies based on the estimation results. First, we examine relative risk 

aversion (RRA) and relative prudence (RPR) implied by the estimated models, and confirm 

that there is an intertemporal relation of expected returns, risk, and skewness. That is, at a 

given level of variance, there is a trade-off between expected returns and negative skewness, 

whereas there is a trade-off between returns and risk at a given level of skewness. Second, we 

investigate whether dispersion in higher-order co-moments, not only dispersion in systematic 

risk, is related to cross-sectional patterns in stock returns for several well-known anomalies: 

the size and value effect, price momentum, idiosyncratic volatility puzzle, and financial 

distress puzzle. The results suggest that, at least partially, the value premium can be a reward 

for bearing low systematic skewness, that the high return on a low volatility stock can be due 

to its cyclical variations, and that the abnormal returns from strategies based on momentum 

and failure probability come from compensation for accepting higher systematic risk 

associated with high risk aversion. 

Overall, our findings indicate that stock market investors consistently prefer positive 

skewness, and that there exists a significant risk-return-skewness relation, whereas there is no 

clear evidence on kurtosis preference. In addition, our empirical findings show that risk-

averse investors demand a hedge against intertemporal changes in systematic risk, indicating 

the importance of intertemporal considerations in asset pricing theories. These suggest that 

the failure of the existing asset pricing theories in explaining several anomalies is possibly 

due to omission of systematic skewness and third-order co-moments related to intertemporal 

hedging demands. 

Our contribution to the literature is twofold. First, we provide a theory based on 

intertemporal optimization of an investor with preference for higher-order moments; this has 

not been explored in previous studies, and it encompasses a wide range of existing theories. 

We add to them by identifying extra premiums required for an increase in systematic risk and 

a decrease in systematic skewness associated with deterioration of investment opportunities. 

On the other hand, we also provide a strong proof for them by confirming that their 
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predictions are not artifacts derived from restrictive, unrealistic assumptions. Second, our 

empirical findings highlight the role of systematic skewness and the third-order co-moments 

related to intertemporal hedging demands in future research. We produce strong evidence for 

an intertemporal relation of expected returns, risk, and skewness, which is not discussed in 

the literature, based on results estimated precisely from the generalized procedure. This 

suggests that third-order moments may play a critical role in resolving asset pricing 

anomalies unexplained by a risk-return trade-off alone. We expect that future empirical 

research on the role of higher-order moments will advance our understanding of asset pricing. 

The remainder of this paper proceeds as follows. Section 2 presents a four-moment 

intertemporal asset pricing model and derives the equation for equilibrium expected returns 

on risky assets. Section 3 presents the empirical framework and provides estimation results 

from cross-sectional regressions. Section 4 discusses time-series and cross-sectional 

implications of the model and explores the role of higher-order moments in asset pricing 

anomalies. Section 5 concludes the paper. 

 

 

2. Theoretical Model 

We derive a four-moment intertemporal asset pricing model that incorporates the effects 

of both higher-order moments and stochastic investment opportunities on the valuation of 

risky assets. The resulting model encompasses the static three- and four-moment CAPM in 

Kraus and Litzenberger (1976), Harvey and Siddique (2000), and Dittmar (2002). We also 

present an economic interpretation of prices of risk by relating them to investor risk attitudes. 

 

2.1 Derivation of a Four-Moment Intertemporal CAPM 

There are N risky assets and a risk-free asset in the economy, traded at times spaced 

discretely. A representative consumer-investor chooses an optimal investment in risky assets 

to maximize expected utility. To focus on the optimal investment decision, it is assumed that 

there is only one good for consumption in the economy and that the remaining amount of 

wealth not invested is used for current consumption. The amount of consumption at time t is 
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denoted by Ct in nominal dollar value, and the amounts of investment in the risk-free asset 

and in the N risky assets at time t are denoted by xt and yt = (y1t, …, yNt)′, respectively, also in 

dollar values. Then, the nominal wealth level of the investor at time t, Wt, is represented as 

Wt = Ct + xt + yt′1N. 

The utility function of the investor is not restricted to a specific form, but is assumed to be 

four times differentiable and time-separable. We follow the standard assumptions of positive 

marginal utility and risk aversion, that is, u′ > 0 and u′′ < 0. Additionally, to determine the 

preference direction for skewness and kurtosis, we further assume that the investor is prudent 

and temperate, i.e., u′′′ > 0 and u′′′′ < 0.3 As Fama (1970) has pointed out, the multi-period 

consumption-investment decision can always be treated as the one-period problem in which 

the agent at time 0 is maximizing the expected value of an indirect utility function at time 1. 

To take uncertainty in future investment opportunities into account, we assume that any 

changes in the investment opportunity set at time t are summarized by K state variables, 

denoted as zt = (z1t, …, zKt)′. Then, the indirect utility function at time t can be represented as 

a function of the investor’s wealth and K state variables at time t, denoted as Vt(Wt, zt). 

Now the investor’s intertemporal consumption-investment decision problem at time 0 can 

be stated as follows: 

 [ ]
0 0 0

0 0 1 1 1 0 0 0 0 0 0 0 1 1{ , , }
max ( ) ( , )   s.t   ,    ,N fC x y

u C E V W z C x y W x R y R Wβ ′ ′+ + + = ⋅ + =1  (1) 

where Rft and Rt = (R1t, …, RNt) are gross returns of the risk-free and the N risky assets, 

respectively, β is the discount parameter, and Et[∙] indicates the expectation operator 

conditional on the information set available to the investor at time t. 

From the above statement, we can determine that the investor’s decision depends on the 

joint conditional probability distribution of (W1, z1). The simplest assumption is that (W1, z1) 

is distributed with the multivariate normal, as in the literature based on mean–variance 

portfolio analysis, including Long (1974). The normality assumption simplifies the problem, 

because the determinants of the expected utility can be summarized with only the first and 

                                           
3 Scott and Horvath (1980) show that, for the usual investor who is consistent in the direction of preference for 
moments, the preference direction is positive for every odd central moment and negative for every even central 
moment. 
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second moment parameters of the multivariate normal distribution. We do not follow this 

convention, however, to take moments of higher order than the variance into consideration. 

Further, we assume no specific probability distribution for (W1, z1), allowing any multivariate 

distribution with finite fourth and lower-order moments. 

Accordingly, the expected utility of the investor is assumed to be determined by the 

fourth and lower-order moments of the joint probability distribution of (W1, z1), that is, its 

mean, variance, skewness, and kurtosis. Note that these moments of the multivariate 

distribution are defined as matrices with co-moments among each variable, which are defined 

precisely shortly.4 Also note that, when considering co-moments between variables, only 

relevant ones in the consumption-investment decision problem are co-moments with wealth, 

W1, which means that co-moments among K state variables themselves would not affect the 

expected utility. 

Based on the preceding distributional assumptions, the investor’s problem given in 

equation (1) can be restated using the relevant moments of the joint probability distribution 

(conditional on the information set at time t). Definitions for all relevant moments are given 

as follows: 

1( ) ( ) ( ) ( )t t t t t t N ft t t t t ft t t N ftm E W W C y R y W C R y Rm m+ ′ ′ ′= = − − + = − + −1 1 , 

where 1( )t t tE Rµ += is the (N x 1) vector of mean returns of the N risky assets, 

1( )t t t t t tv Var W y y+ ′= = Σ , 

where 1( )t t tVar R +Σ = is the (N x N) matrix of covariance among the N risky assets, 

1 1( , )t t t t t th Cov W z y+ + ′= = Φ     (1 x K), 

where 1 1( , )t t t tCov R z+ +Φ = is the (N x K) matrix of covariance between the N risky assets and 

the K state variables, 

3 3
1 1 1( ) ( ) { ( )} ( )t t t t t t t t t t t t t ts Skew W E W m E y R y y ym+ + +′ ′   = = − = − = Θ ⊗    , 

                                           
4 Though there may be many ways to define the multivariate skewness and kurtosis, we follow the definition of 
the so-called higher-order moment tensors introduced in Harvey et al. (2010), Jondeau and Rockinger (2006), 
and Martellini and Ziemann (2010). 
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where [ ]1 1 1( )( ) ( )t t t t t t t tE R R Rµµµ  + + +′ ′Θ = − − ⊗ −  is the (N x N2) matrix of co-skewness 

among the N risky assets, 

[ ]
[ ]

1 1 1 1 1 1

1 1 1 1

( , ) ( )( ) ( ( ))

( )( ) ( ( )) ( )
t t t t t t t t t t t t

t t t t t t t t t t t t t K

l Coskew W z E W m W m z E z

E y R R y z E z y y Im m
+ + + + + +

+ + + +

′ ′= = − − ⊗ −

′ ′ ′ ′= − − ⊗ − = Ψ ⊗      (1 x K), 

where [ ]1 1 1 1( )( ) ( ( ))t t t t t t t t tE R R z E zµµ + + + +′ ′Ψ = − − ⊗ −  is the (N x NK) matrix of co-

skewness between the N risky assets and the K state variables, 

4 4
1 1 1( ) ( ) { ( )} ( )t t t t t t t t t t t t t t tk Kurt W E W m E y R y y y ym+ + +′ ′   = = − = − = Π ⊗ ⊗    , 

where [ ]1 1 1 1( )( ) ( ) ( )t t t t t t t t t tE R R R Rµµµµ   + + + +′ ′ ′Π = − − ⊗ − ⊗ −  is the (N x N3) matrix of co-

kurtosis among the N risky assets, 

[ ]
[ ]

1 1 1 1 1 1 1

1 1 1 1 1

( , ) ( )( ) ( ) ( ( ))

( )( ) ( ) ( ( ))
( )                                                        

t t t t t t t t t t t t t t

t t t t t t t t t t t t t

t t t t K

n Cokurt W z E W m W m W m z E z

E y R R y R y z E z
y y y I

m m m
+ + + + + + +

+ + + + +

′ ′ ′= = − − ⊗ − ⊗ −

′ ′ ′ ′= − − ⊗ − ⊗ −

′= W ⊗ ⊗                              (1 ),K×  

where [ ]1 1 1 1 1( )( ) ( ) ( ( ))t t t t t t t t t t tE R R R z E zµµµ  + + + + +′ ′ ′Ω = − − ⊗ − ⊗ −  is the (N x N2K) matrix 

of co-kurtosis between N risky assets and K state variables. 

Given the joint conditional probability distribution of (Wt+1, zt+1), there exists a function 

G at any time t that satisfies the following property: 

 [ ]1 1 1( , , , , , , , ) ( ) ( , )  .t t t t t t t t t t t t tG C m v h s l k n u C E V W zβ + + += +  (2) 

Now, the problem in equation (1) can be restated using the moments of the joint 

conditional probability distribution of (W1, z1): 

 
0 0

0 0 0 0 0 0 0 0{ , }
max ( , , , , , , , ) .
C y

G C m v h s l k n  (3) 

The first-order condition with respect to y0 to get the optimal amount of risky investments 

is obtained as in the following: 
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0 0 0 0 0
0 0 0

0 0 0 0 0
0 0

0 0 0 0 0 0 0
0 0

0 ( ) 2

3 ( ) 2 ( )

4 ( ) 3 ( )  .

N f

K

K

G G GR y
m v h
G Gy y y I
s l
G Gy y y y y I
k n

m∂ ∂ ∂
= ⋅ − + ⋅ Σ +Φ

′∂ ∂ ∂
∂ ∂

+ ⋅ Θ ⊗ + Ψ ⊗ ⋅
′∂ ∂

∂ ∂
+ ⋅ Π ⊗ ⊗ + Ω ⊗ ⊗ ⋅

′∂ ∂

1

 (4) 

Since the first-order condition in equation (4) is not linear in y0, the closed-form solution 

for the optimal allocation of risky assets cannot be calculated. Nevertheless, the expected 

returns of risky assets that clear the market can be obtained with additional assumptions on 

the securities market. We assume that there are I identical investors in the market, and denote 

the total amount of market supply of the N risky assets in dollars as V = (V1, …, VN). These 

two additional assumptions indicate that the market clearing condition should be I∙y0 = V. 

Investors’ first-order condition in equation (4) and the market clearing condition jointly 

imply that the following equation for the expected returns of risky assets should hold in 

market equilibrium: 

 

0 0 0 0

0 0

0 02

0 ( ) 2

1 3 ( ) 2 ( )

1 14 ( ) 3 ( )  ,

m N f v h

s K l

k K n

I G R G V I G

G V V V I G
I

G V V V V V I G
I I

m ′= ⋅ ⋅ − + ⋅ Σ + ⋅Φ ⋅

′+ ⋅ ⋅ Θ ⊗ + Ψ ⊗ ⋅

′+ ⋅ ⋅ Π ⊗ ⊗ + ⋅ Ω ⊗ ⊗ ⋅

1

 (5) 

where Gx means the partial derivative of the function G with respect to a variable x. 

The equilibrium rates of return on the N risky assets, implied by equation (5), are 

presented in the following equation (for the mathematical derivation, see Appendix A): 



- 11 - 

 

 

[ ]

1 1 1

1 1 1

2
2

1 12

1 1 1 1

2( ) ( )( )

( )( ( ))

3( ) ( )( )

2( ) ( )( )( ( ))

4( )

M MN v
t t ft t t t t t

m

h
t t t t t t

m

M MN s
t t t t t

m

M MN l
t t t t t t t t

m

N

V GE R R E R R
I G

GE R z E z
G

V G E R R
I G

V GE R R z E z
I G

V

m m

m

m m

m m

+ + +

+ + +

+ +

+ + + +

′
  − = − ⋅ ⋅ − −   

′
′− − − ⋅

′
 − ⋅ ⋅ − − 

′ ′
′ − ⋅ − − − ⋅ 

′
−

1

1

1

1 3
3

1 13

2
2

1 1 1 12

( )( )

3( ) ( )( ) ( ( ))  ,

M Mk
t t t t t

m

M MN n
t t t t t t t t

m

G E R R
I G
V GE R R z E z

I G

m m

m m

+ +

+ + + +

 ⋅ ⋅ − − 

′ ′
′ − ⋅ − − − ⋅ 

1  (6) 

where 1
1 1( )M

t N tR V V R−
+ +′ ′= 1  indicates gross return of the value-weighted portfolio of the N risky 

assets, and 1
1( ) ( )M M

t t t N tE R V Vµµ −
+ ′ ′= = 1  indicates its mean. 

The resulting equation shows that the expected return on a risky asset is determined 

proportionally by (i) its covariance with returns on the market portfolio, (ii) its co-skewness 

with market returns, and (iii) its co-kurtosis with market returns, regardless of whether the 

investment opportunities are stochastic. In addition, when the investment opportunities are 

stochastic, the expected return on a risky asset should include extra premiums for (iv) its 

covariance with each state variable, (v) its co-skewness with market returns and each state 

variable, and (vi) its co-kurtosis with squared market returns and each state variable. Note 

that the equation is reduced to the static four-moment CAPM if the investment opportunities 

are assumed to be deterministic. The terms of co-moments with state variables are 

additionally introduced in our model, to capture intertemporal hedges against deterioration of 

investment opportunities. 

 

2.2 Interpretation with Mean-Variance-Skewness-Kurtosis Approximation 

To present an economic interpretation on price of each co-moment term in the pricing 

equation, we suppose in this subsection that the expected utility of the representative investor 

can be approximated as a function of mean, variance, skewness, and kurtosis of the investor’s 
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wealth and state variables. The four-moment approximation leads to interpretation on our 

pricing equation in more intuitive way, which is consistent with investor preference. 

To this end, we consider the investor’s utility as a function of wealth and K state variables. 

Further, it is assumed that the utility becomes zero when differentiated with respect to any 

state variables more than twice (i.e., uzz = 0, uwzz = 0, uzzz = 0, uwwzz = 0, uwzzz = 0, uzzzz = 0). 

The fourth-order Taylor expansion of the utility function at time 1 around the conditional 

mean of (W1, z1) yields that: 

 

1 1 0 0 0 0 1 0 1 0 0 0

2
0 0 1 0 1 0 1 0 0 0

3 2
0 0 1 0 1 0 1 0 0 0

4 3
0 0 1 0 1 0 1 0
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where 0z  denotes the conditional mean of z1 at time 0. By taking the conditional expectation 

on both sides of (7) and using the notation for the conditional moments defined above, the 

expected utility can be approximated as a linear function of the moments that could affect it. 
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Now we define a new variable, 1N N N t
t

t

V V yi
m I W I W
′ ′ ′

= = ⋅ =
1 1 1 , which represents the ratio of 

the amount of risky investments to the mean wealth level, or the investment–wealth ratio.5 

From this new definition and the approximated formula in (8), we can express the price of 

                                           
5 If we let w denote the proportion of risky investments in Wt – Ct, the investment-to-wealth ratio, it, can be 
represented as { }(1 ) M

ft tw w R wµ− + . This indicates the ratio of risky investments to the expected payoff of 

total investments in the next period. 
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each co-moment in the equilibrium expected returns of (6) in terms of parameters indicating 

investor preference and risk attitude, as follows: 
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where θt is a measure of relative prudence at the mean level of wealth, 
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where ηt is a measure of relative temperance at the mean level of wealth,6 
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ρ =  is a (K x 1) vector that measures how much prudence increases as 

each of the state variables increases. 

From the four-moment approximation of the expected utility, the asset pricing equation in 

(6) can be rewritten as follows: 
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An interpretation of the equation of equilibrium expected returns in (9) is given as follows. 

Risk-averse investors require a higher rate of return on a risky asset whose covariance with 

market return is higher—the more risk-averse investors are, the higher the return premium 

required. Prudent investors require a higher rate of return on a risky asset whose co-skewness 

with market return is lower—the more prudent investors are, the higher the return premium 

required. Temperate investors require a higher rate of return on a risky asset whose co-

                                           
6 Kimball (1992) introduces the concept of temperance to refer that an unavoidable background risk should lead 
an investor to behave in a more risk-averse way for another risk, even if the two risks are statistically 
independent. The risk-averse and prudent investor is temperate if and only if the fourth derivative of his utility is 
negative, i.e., u′′′′ < 0. 
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kurtosis with market return is higher—the more temperate investors are, the higher the return 

premium required. If investment opportunities change over time stochastically, expected 

return is determined in proportion to the covariance between asset return and state variables. 

For a state variable that causes the marginal utility to increase as it increases (i.e., δt > 0), the 

higher rate of return is required as the covariance is lower. Expected return is determined in 

proportion to the co-skewness among asset return, market return, and state variables. For a 

state variable that causes risk aversion to increase as it increases (i.e., λt > 0), the higher rate 

of return is required as the co-skewness is higher, since high co-skewness indicates an 

increase in systematic risk in an unfavorable state. Expected return is determined in 

proportion to the co-kurtosis among asset return, squared market return, and state variables. 

For a state variable that causes prudence to increase as it increases (i.e., ρt > 0), the higher 

rate of return is required as the co-kurtosis is lower, since low co-kurtosis indicates a decrease 

in systematic skewness in an unfavorable state. 

Our model encompasses the existing asset pricing models. The model is reduced to (i) the 

static CAPM of Sharpe (1964) and Lintner (1965) if it is assumed that the investment 

opportunities are constant, and that prudence and temperance are zero (i.e., θt = ηt = 0) or the 

asset returns are normally distributed; (ii) the three-moment static CAPM of Kraus and 

Litzenberger (1976) and Harvey and Siddique (2000) if it is assumed that the investment 

opportunities are constant, and that temperance is zero (i.e., ηt = 0) or the asset returns have 

zero kurtosis; (iii) the four-moment static CAPM of Dittmar (2002) if it is assumed that the 

investment opportunities are constant; (iv) the intertemporal CAPM of Merton (1973) and 

Long (1974) if it is assumed that prudence and temperance are zero (i.e., θt = ηt = 0) or the 

asset returns are normally distributed, and that risk aversion does not change with the 

investment opportunity (i.e., λt = 0). 

In addition to the existing models, our model further captures compensation for co-

skewness and co-kurtosis among asset return, market return, and state variables. Premiums 

for these third- and fourth-order co-moments indicate intertemporal hedging demands of the 

long-term investor who has preference for low variance, high skewness, and low kurtosis, for 

unfavorable changes in systematic risk and systematic skewness, respectively. 
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3. Empirical Results 

In this section, we present empirical evidence for the four-moment ICAPM using U.S. 

stock market data. Employing various state variables as predictors of future investment 

opportunities, we investigate whether co-moments in the asset pricing equation derived 

theoretically are priced in the cross-section of stock returns. We also estimate prices of co-

moments for various model specifications, using two-pass cross-sectional regressions. 

 

3.1 Data and Methodology 

For the empirical investigation, we use daily returns of individual stocks from the CRSP 

database. Specifically, our sample includes all NYSE/AMEX/NASDAQ ordinary common 

stocks with CRSP share codes 10 and 11 over the period 1926 to 2012. In each year during 

the period, stocks with less than 126 observations of daily returns are excluded. We use the 

CRSP value-weighted index as the market portfolio and the one-month Treasury bill rate as 

the risk-free rate. 

To explore the role of stochastic investment opportunities in the four-moment ICAPM 

empirically, it is essential to choose appropriate state variables to predict a change in the 

future investment opportunity set. Based on the empirical asset pricing literature, we consider 

six state variables in our empirical model specifications: dividend yield (DIV), three-month T-

bill rate (TB), term spread (TERM), default spread (DEF), and the Fama and French (1993) 

firm-size (SMB) and book-to-market (HML) risk factors. The macroeconomic variables are 

known to have predictive power for expected stock returns and are widely used in the return 

predictability literature (Fama and Schwert, 1977; Keim and Stambaugh, 1986; Campbell, 

1987; Campbell and Shiller, 1988; Fama and French, 1988, 1989). The dividend yield at daily 

frequency is defined as the difference between the CRSP value-weighted return including 

dividends and the same return excluding dividends. The term spread is the difference between 

yields of the 10-year and 1-year Treasury bonds; daily term spread is available from January 

1962. The default spread is defined as the difference between yields of Moody’s BAA and 
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AAA corporate bonds; daily default spread is available from January 1986.7 The three-month 

T-bill rate in daily frequency is available from January 1954. The data for macroeconomic 

variables are taken from Federal Reserve Economic Data (FRED). We also use the risk 

factors formed by Fama and French (1993) as proxies for investment opportunity. One 

possible interpretation of the outstanding performance of the Fama–French (1993) three-

factor model in explaining the cross-section of stock returns is that the firm-size and book-to-

market risk factors are state variables in the context of the Merton’s (1973) ICAPM. Liew and 

Vassalou (2000) document supporting evidence that SMB and HML contain significant 

information about future GDP growth. The Fama–French (1993) risk factors are obtained 

from Kenneth French’s website.8 

To investigate whether the higher-order moment terms introduced in our theoretical 

model are priced in the cross-section of stock returns, we employ both portfolio sorts and the 

cross-sectional regressions approach. Using portfolio sorts, we form quintile and decile 

portfolios based on univariate sorts of each co-moment estimated using daily returns of 

sample stocks in each year. Then, we compute both value-weighted and equal-weighted 

monthly returns of portfolios and investigate whether considerable return dispersion is 

produced across sorted portfolios. 

Using cross-sectional regressions, we directly estimate market prices of co-moment risks. 

We employ the traditional two-pass estimation approach pioneered by Black, Jensen, and 

Scholes (1972) and Fama and MacBeth (1973) with a couple of modifications. First, co-

moments of each asset are estimated by method-of-moment estimation using time-series data 

in the first stage, since we do not assume a factor model as a return generating process and so 

cannot apply the conventional time-series regressions. We instead estimate annual co-

moments for each asset as the sample moments calculated with daily observations for each 

year. Second, we do not create test portfolios and use the entire universe of individual stocks 

as test assets. The original motivation for using portfolios in cross-sectional regression tests is 

to reduce the errors-in-variables problem in the second stage caused by the regressors 

                                           
7 Throughout the paper, we do not report empirical results based on default spread (DEF) as a state variable to 
focus on results for two sub-periods, the pre- and post-1962 periods. For the period 1986 to 2012, the same 
results as reported in all tables, including those based on default spread (DEF), are available upon request. 
8 The Kenneth French’s website address is http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/. 
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estimated in the first stage. However, portfolio formation cannot eliminate the problem 

completely, and correction is still necessary in calculating standard errors of the second-stage 

estimates to reflect the estimation errors in the first-stage estimates. Moreover, the recent 

work of Ang, Liu, and Schwarz (2010) documents that using individual assets leads to more 

precise estimates in the second stage than using portfolios, because it does not destroy 

information on cross-sectional dispersion of betas. 

More specifically, we estimate co-moments of each asset using daily data for non-

overlapping rolling estimation windows at annual frequency. Then, we run cross-sectional 

regressions of excess returns of stocks on estimated co-moments for each day of the sample 

periods, and obtain the second-stage estimates for prices of co-moment risks as time-series 

averages of cross-sectional coefficients, following the method of Fama and MacBeth (1973). 

To obtain the standard errors of the second-stage estimates corrected for estimation errors in 

the first stage, we derive an analytic formula of asymptotic standard errors using the general 

GMM framework described in Cochrane (2005), which generalizes the conventional method 

proposed by Shanken (1992). Note that the Shanken’s (1992) correction cannot be applied to 

our model, since our model estimates not only the mean and variance, but also the third- and 

fourth-order moments, unlike general beta pricing models, and hence it cannot be stated as a 

factor model. The formula for asymptotic standard errors is given in Appendix B. 

The estimated model specification is as follows: 
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We do not standardize co-moments of assets in the units of those of the market portfolio in 

estimating models. With this specification, the cross-sectional regression coefficients λj are 

directly interpreted as parameters representing investors’ risk attitudes, defined in Section 2.2. 

 

3.2 Co-moment Premiums 

To examine whether the difference in co-moments earns a significant return premium, we 

form portfolios of sample stocks based on each co-moment estimated using daily returns in 

each year. Specifically, annual co-moments are estimated as the sample moments using daily 

data for stock returns, the market portfolio returns, and state variables. At the beginning of 

each year, we form quintile and decile portfolios sorted on each of the estimated co-moments, 

and monthly equal- and value-weighted returns are calculated. Table 1 reports mean monthly 

returns of co-moment–sorted portfolios over the full sample period. 

During the period 1926 to 2012, stocks with high systematic variance β earn higher 

returns than stocks with low β, indicating that systematic variance is positively priced, as 

predicted by the traditional CAPM. The mean value-weighted return of the zero-investment 

portfolio based on decile sorts is 0.76% with a t-statistic of 2.36, and the equal-weighted 

return is 1.61%, with a t-statistic of 5.39. Differences in systematic skewness γ and systematic 

kurtosis δ also yield significant return premiums. Focusing on value-weighted strategies, 

returns of the γ-sorted portfolios decrease monotonically from 1.27% to 0.51% per month, 

yielding a significant return difference of -0.77% (t-statistic=-3.76) on the zero-investment 

portfolio. Returns on the δ-sorted portfolio show monotonically increasing patterns from 0.63% 

to 1.24% per month, with a return premium of 0.61% (t-statistic=2.49). These patterns are 

consistent with theoretical predictions that systematic skewness is negatively priced and 

systematic kurtosis is positively priced if risk-averse investors have positive relative prudence 

and temperance. They are also consistent with the empirical results of Harvey and Siddique 

(2000) and Dittmar (2002).9 

                                           
9 The three-moment CAPM of Kraus and Litzenberger (1976) predicts that the price of systematic skewness 
should have the opposite sign as the skewness of market returns, when systematic skewness is defined as a 
standardized third moment. Given the fact that aggregate stock returns are negatively skewed during our sample 
period, our empirical results are also consistent with them. 
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To investigate the effect of co-moments that reflect intertemporal hedging demands on 

stock returns, we choose three state variables, the dividend yield (DIV), size (SMB), and value 

(HML) factors by Fama and French (1993), which are available for the full sample period. 

For dividend yield, the second- and third-order co-moments with respect to DIV, ηDIV and 

κDIV, do not generate clear patterns of sorted portfolio returns. Returns of quintile portfolios 

sorted on the fourth-order co-moment πDIV, however, increase monotonically from 0.60% to 

1.02%, yielding monthly return premiums of 0.41% (t-statistic=2.70) and 0.63% (t-

statistic=3.37) based on quintile and decile sorts, respectively. The positive return premium of 

the zero-investment portfolio indicates that an investor’s prudence tends to decrease as 

dividend yield increases, resulting in a reward of high returns on stocks with high πDIV. The 

sign of the price of πDIV suggests that dividend yield is a proxy for a state favorable for 

investors, in that an increase in dividend yield corresponds to a decrease in the precautionary 

savings motive. 

For SMB and HML, none of the co-moments other than the third-order moment with 

respect to SMB show significant return premiums on sorted portfolios. The value-weighted 

returns of portfolios sorted on κSMB decrease monotonically, and the zero-investment 

portfolios based on quintile and decile sorts earn significant returns of -0.67% (t-statistic=-

3.54) and -0.90% (t-statistic=-3.84) per month, respectively. The negative return on the zero 

investment portfolio means that an investor’s risk aversion decreases as SMB increases, 

leading to higher returns required on stocks with low κSMB, that is, stocks with relatively low 

systematic risk when SMB is high. The sign of the return premium of κSMB can be well 

explained by the results of Liew and Vassalou (2000), which document that SMB predicts 

future macroeconomic growth (i.e., good states), combined with the conditional asset pricing 

literature, which states that risk aversion is high in bad times.10 

Table 2 and Table 3 report returns of portfolios sorted on co-moments for the sub-periods 

of 1926 to 1961 and 1962 to 2012, respectively. Focusing on pricing of systematic moments 

with the market returns, β, γ, and δ, are priced significantly in both the pre- and post-1962 

                                           
10 For theoretical work, the model with external habit formation by Campbell and Cochrane (1999) predicts 
counter-cyclical risk aversion by assuming that risk aversion is governed by the surplus consumption ratio. For 
empirical work, Lettau and Ludvigson (2001a,b) argue that the consumption-wealth ratio, cay, is high when risk 
or risk aversion is high and document supporting empirical evidence. 
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periods, though the magnitudes of return premiums earned by the zero-investment portfolios 

are reduced after 1962. For example, the value-weighted strategies based on the γ-sorted 

decile yield -1.23% (t-statistic=-2.71) in the pre-1962 period and -0.78% (t-statistic=-2.42) in 

the post-1962 period. In Table 2, returns of the πDIV- and κSMB-sorted portfolios generate 

insignificant premiums during the period 1926 to 1961, though the signs of the premiums are 

not changed. The results in Table 1 for the full period that πDIV and κSMB are significantly 

priced come from strong patterns in Table 3 for the period 1962 to 2012. Examining the sub-

periods separately, portfolios sorted on the second-order co-moment with respect to DIV, ηDIV, 

and on the fourth-order co-moment with respect to HML, πHML, show clear increasing 

patterns of quintile returns in the pre-1962 period. The value- and equal-weighted returns of 

the zero-investment portfolio sorted on πHML-quintile are 0.96% and 1.31% with t-statistics of 

2.48 and 3.92, respectively, during the pre-1962 period. The sign of the price of πHML implies 

that HML can serve as a proxy for a favorable state with low investor prudence during that 

period. However, the signs of return premiums produced by ηDIV and πHML are reversed after 

1962 in Table 3. During the post-1962 period, no co-moments yield clear patterns except for 

πDIV and κSMB, while some (κHML and πHML) earn significant premiums only based on equal-

weighted strategies. For state variables of the T-bill rate (TB) and the term spread (TERM), 

which are only available for the post-1962 period, none of the portfolios sorted on co-

moments with respect to TB and TERM show dispersion in returns. In results for the period 

1986 to 2012 (not tabulated), portfolios sorted on co-moments with respect to the default 

spread (DEF) also do not show clear patterns. 

In sum, we find evidence that systematic skewness and kurtosis, as well as variance, are 

priced and the directions of their prices are consistent with theoretical predictions. When risk-

averse investors consistently prefer higher skewness and lower kurtosis, low systematic 

skewness and high systematic kurtosis of risky assets should require compensation in the 

form of high returns. In addition, we find that the third- and fourth-order co-moments of 

stocks with market returns and several state variables are also priced, suggesting that 

investors have further demands to hedge against intertemporal deterioration of investment 

opportunities. 
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Though we find empirical evidence of co-moment premiums, the results from portfolio 

sorts are not sufficient, because we examine only portfolios based on one-way sorts of each 

co-moment. Though multivariate portfolio sorts might give clearer evidence, we do not 

employ them since we consider higher-order moments up to the fourth-order of various state 

variables, resulting in large numbers of cases of multivariate sorts. Instead, we take a closer 

look at pricing of co-moments using the cross-sectional regressions approach and directly 

estimate prices of co-moments in the next subsection. 

 

3.3 Cross-Sectional Regressions 

Table 4 presents estimation results of the two-pass cross-sectional regressions specified in 

equation (10) for the full sample period of 1926 to 2012. We report both t-statistics using 

Fama and MacBeth (1973) standard errors and the standard errors corrected for the errors-in-

variables for comparison. Examining the results of static models, cross-sectional regressions 

of the traditional CAPM (model 1) and the three-moment CAPM (model 2) give statistically 

significant estimates, while the price of systematic kurtosis is not significant in the four-

moment CAPM (model 3). The price of systematic risk β is 5.62 with a t-statistic of 4.70 in 

model 1 and 4.49 with a t-statistic of 3.31 in model 2. The estimated price of systematic 

skewness γ is -603.90 with a t-statistic of -4.66. The signs of estimated coefficients are 

consistent with assumptions on investor preference and previous results by portfolio sort. On 

the other hand, the coefficient on systematic kurtosis is not statistically significant, nor does it 

have the predicted sign in model 3. While higher δ earns a higher return based on the 

univariate sort in Section 3.2, δ is not significantly priced in the presence of the second- and 

third-order moments. This result implies that investors’ relative temperance is not 

distinguishable from zero, while their relative risk aversion and prudence have nonzero 

positive values. 

With regard to intertemporal models, estimation results are quite different among models, 

depending on the choice of state variable. When we choose dividend yield (DIV) as a state 

variable, none of the co-moments with respect to DIV are significantly priced, while the 

estimated coefficients of systematic moments with the market returns are not changed 
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substantially. This result is inconsistent with the finding in Section 3.2 that the fourth-order 

co-moment πDIV generates a significant return dispersion, indicating the effect disappears 

when systematic risk and skewness are included together. For SMB, the second-order co-

moment with SMB, ηSMB, has positive and significant coefficients in models 7, 8, and 9, as 

expected from empirical studies of Fama and French (1993). The positive price of ηSMB 

indicates that the marginal utility of wealth decreases as SMB increases, which results in 

higher expected returns on stocks with high ηSMB. However, the third- and fourth-order 

moments are not significant. Including HML as a state variable does not provide supporting 

evidence on pricing of co-moments with respect to HML. Considering SMB and HML 

together in models 13, 14, and 15 does not change substantially the results of models with a 

single state variable. Overall, significant return premiums produced by portfolios sorted on a 

couple of higher-order co-moments with state variables become insignificant in the presence 

of systematic variance and skewness during the period 1926 to 2012. One notable thing is 

that systematic skewness γ is highly significant in all specifications considered, and the 

significance is not eliminated by inclusion of other variables. This result implies that 

investors are likely to have strong motives for precautionary savings and that mean–variance 

models such as the traditional CAPM cannot capture the effect of such preference on asset 

prices. 

The results of cross-sectional regressions during the period 1926 to 1961 are reported in 

Table 5 and are very similar to those of the full period. Overall, stocks’ systematic variance 

and covariance with SMB are priced positively, and systematic skewness has negative and 

significant coefficients in all specifications. The estimation results for the post-1962 period 

yield stronger evidence on the effects of co-moments with state variables on asset prices. 

Maintaining focus on co-moments with state variables in Table 6, the covariance with SMB 

has positive and significant coefficients in all specifications, as in Table 4 and Table 5. In 

addition, several higher-order moments are also significantly priced during the post-1962 

period; the third-order co-moments with respect to HML and TERM, κHML and κTERM, have 

negative and statistically significant coefficients in model 11 and model 20. The coefficient of 

κHML has a t-statistic of -2.12 when standard errors are corrected for the errors-in-variables, 

and remains significant, though marginal, when we employ two state variables, SMB and 
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HML, together (in model 14). The t-statistic of -2.40 for κTERM also shows that the third-order 

effect of the term spread is strong. The negative prices of κHML and κTERM imply that HML 

and TERM are likely proxies for a state with low risk aversion, which leads to higher 

expected returns on stocks with low κHML or κTERM as a reward for higher systematic risk 

when risk aversion rises. On the other hand, the fourth-order co-moment with respect to SMB, 

πSMB, is marginally significant and has a positive price in model 9 and model 15. 

Combining the results from the cross-sectional regression analyses, the pricing effects of 

higher-order co-moments seem to depend on the choice of a state variable and sample periods. 

Further, when compared to results in Section 3.2, the magnitudes and directions of return 

premiums are not retained by the inclusion of other moments. Nevertheless, our results 

represent strong evidence that systematic skewness is negatively priced, consistent with 

theoretical predictions and previous empirical studies. Additionally, we find empirical 

evidence supporting our theoretical model, in that co-moments of higher order than the 

variance with some state variables could earn significant return premiums. This finding is not 

investigated in previous studies, and provides a new interpretation of the relation between 

various state variables and asset prices based on theory. For example, we find that the third-

order co-moment with respect to HML or TERM has a negative effect on stock returns 

empirically, and this result can be interpreted as that the book-to-market factor and the term 

spread are relevant in asset pricing due to their relations to variations in risk aversion. Given 

that the choice of state variables is critical to empirical performance of the model, even 

though this choice is not based on theory, further studies to find a more pertinent proxy 

describing changes in investment opportunities are needed to advance understanding of the 

higher-order effects of intertemporal hedging demands on asset pricing. 

 

 

4. Implications 

In this section, we discuss the prediction of the four-moment ICAPM and its implications 

for asset pricing anomalies. The model’s prediction can be interpreted in two ways—time-

series and cross-sectional relations of expected returns with co-moments. As a time-series 
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implication, we examine a mean-variance-skewness trade-off based on risk-attitude 

parameters implied by the estimated models, extending the literature on risk-return trade-off. 

As a cross-sectional implication, we investigate relations between returns and co-moments of 

portfolio strategies based on several cross-sectional anomalies—firm size, book-to-market 

ratio, momentum, idiosyncratic volatility, and failure probability. 

 

4.1 Intertemporal Relation of Expected Returns, Risk, and Skewness 

In the estimation results of cross-sectional regressions, one clear finding is that 

coefficients on systematic variance β are significantly positive in most specifications with the 

second- and third-order moments. This could be promising evidence for both our theory and 

our empirical approach, given that poor empirical performance of the CAPM is well known 

and that numerous empirical studies have failed to find a positive risk-return trade-off 

(Campbell, 1987; Breen et al., 1989; Nelson, 1991; Glosten et al., 1993; Harvey, 2001).11 

Moreover, in all the third-order specifications, coefficients on systematic skewness γ are 

significantly negative, implying that there is an intertemporal relation among mean, variance, 

and skewness, or a risk-return-skewness trade-off. In other words, at any given level of 

variance, there is a trade-off between expected returns and negative skewness, as well as a 

trade-off between expected returns and variance at a given level of skewness. The asset 

pricing equation from the four-moment ICAPM derived in Section 2 shows that such a 

relation should exist if the representative agent is risk-averse and prudent. 

In this regard, we examine risk-attitude parameters, relative risk aversion (RRA) and 

relative prudence (RPR), implied by the estimated model in Section 3.3.12 Specifically, we 

obtain implied RRA and RPR using the estimated coefficients of cross-sectional regressions, 

from the following relation: 

                                           
11 Recently, several empirical studies find a significantly positive risk-return trade-off by introducing a new 
approach. Ghysels et al. (2005) introduce a new variance estimator with past daily squared returns, Guo and 
Whitelaw (2006) decompose the expected returns into the risk and hedge components, and Bali (2008) use a 
large cross-section instead of using the market portfolio alone. 
12 We do not consider the relative temperance parameter, or a mean-variance-skewness-kurtosis relation, since 
the estimated coefficients on systematic kurtosis are generally not positive nor statistically significant.  



- 26 - 

 

 

1 1 1

2
2

1 1

( )( )

( )( )  ,
2

M M
t t ft t t t t t t t

M Mt
t t t t t t t

E R R i E R R

i E R R

γ µµ

γ θ µµ

+ + +

+ +

  − = ⋅ ⋅ − −   

 − ⋅ ⋅ ⋅ − − +    (11) 

where γt is RRA, θt is RPR, it is the ratio of risky investments to the expected payoff of total 

investments in the next period, defined as { }(1 ) M
t ft ti w w R wµ= − + , and w denotes the 

proportion of risky investments in total investments, Wt – Ct. To calculate it for given w, we 

use mean annual returns of the market portfolio and the risk-free asset during the sample 

period. Since there is no criterion to set a value of w, we let w vary within a reasonable range. 

We assume that w has a positive value, because negative w means that the representative 

investor has a short position in the market portfolio, which seems implausible. Also, we allow 

w to have a value greater than 1, which means that the investor invests in risky assets with 

borrowed money at a risk-free rate. In Table 7, we present implied RRA and RPR for models 

specified with up to the third-order moments and varying values of w from 0.25 to 2. 

Panel A in Table 7 shows implied RRA and RPR for the full sample period of 1926 to 

2012. Several features of RRA are notable. First, the implied RRA has a positive value in all 

considered specifications, with a range of 0.99 to 24.01 and an average of 5.82. This range 

includes the reasonably acceptable levels of 2 to 5 in the literature. Second, the implied RRA 

has a smaller value in the third-order specifications than in the second-order specifications. 

This indicates that taking the third-order moments into consideration improves the estimation 

of a risk-return trade-off, in that an implied value of RRA matches up better with economic 

intuition. Third, implied RRA tends to be smaller in intertemporal models than in static 

models, although there is an exception—intertemporal models with DIV as a state variable. 

This suggests that inclusion of co-moments reflecting intertemporal hedging demands yields 

a more reasonable relation between risk and return. Finally, implied RRA decreases as the 

proportion of risky investments, w, increases. This seems natural because the less risk-averse 

the investor is, the more the investor invests in the risky portfolio. 

While there is agreement on the level of RRA from the extensive literature, we can hardly 

find a general consensus on a reasonable level of RPR. From cross-sectional regressions 

using daily individual stock returns over the period 1926 to 2012, we obtain an RPR value of 

750.76 on average. For w greater than 1, which gives more reasonable RRA values, the 
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average of the implied RPR is 372.13. For RPR, the effect of inclusion of a state variable is 

not clear—some intertemporal models give smaller values of RPR than a static model, and 

others do not. Like RRA, implied RPR also decreases as the proportion of risky investments 

w increases. This suggests that the more prudent the investor is, the less the investor invests 

in risky assets. 

Panel B and Panel C in Table 7 show the same results for the periods 1926 to 1961 and 

1962 to 2012, respectively. Though overall features of implied RRA and RPR are retained in 

both periods, the magnitudes of implied parameter values differ slightly between the two sub-

periods. Except for intertemporal models with HML as a state variable, the implied RRA in 

the post-1962 period is smaller than that in the pre-1962 period. In contrast, the implied 

values of RPR in the post-1962 period are relatively larger than those in the pre-1962 period, 

with the exceptions of models with SMB or HML as state variables. 

To sum up, we investigate a risk-return trade-off and a risk-return-skewness relation 

implied by the estimation results of cross-sectional regressions in Section 3.3. The implied 

RRA has a value within a quite reasonable range based on the literature, and it indicates that 

both our theory and empirical framework work well. In addition, we examine the implied 

RPR values, which are rarely discussed in previous research. Though there is no general 

criterion, our empirical findings indicate that there is clear evidence of risk-return-skewness 

trade-off. This suggests that future research on risk-return trade-off should take the effect of 

skewness into account as well. 

 

4.2 Co-moment Dispersion and Cross-Sectional Anomalies 

Although numerous asset pricing studies have made great efforts to explain anomalous 

phenomena in financial markets, existing models based on mean–variance portfolio theories 

leave a number of cross-sectional patterns in stock returns unexplained. We explore the 

possibility that some cross-sectional anomalies, at least partially, may be attributable to 

differences in higher-order moments or intertemporal hedging demands. For instance, if 

portfolios based on a particular anomaly show a decreasing pattern in systematic skewness, 

which is negatively priced in the cross-section, this implies that part of the abnormal return 



- 28 - 

 

on the anomaly-based strategy can be due to a reward for accepting low systematic skewness. 

In this sense, we examine dispersion in co-moments and its relation with returns for several 

well-known cross-sectional anomalies. 

More specifically, we consider five anomalies—the size and value effects documented by 

Fama and French (1992), the price momentum documented by Jegadeesh and Titman (1993), 

the idiosyncratic volatility puzzle by Ang, Hodrick, Xing, and Zhang (2006), and the 

financial distress puzzle in Campbell, Hilscher, and Szilagyi (2008). For the size and value 

effects, we obtain daily and monthly returns of quintile and decile portfolios sorted on firm 

size and book-to-market ratio directly from the Kenneth French’s website. For momentum 

portfolios, at the beginning of each month t, we construct quintile and decile portfolios based 

on prior returns over months t-7 to t-2. Following Ang et al. (2006), we define the 

idiosyncratic volatility of a stock for month t as the standard deviation of residuals from the 

regression of daily excess returns during month t on the Fama–French three factors. Then, at 

the beginning of each month t, we form quintile and decile portfolios sorted on idiosyncratic 

volatility in month t-1. Finally, we construct a monthly measure of failure probability of each 

stock following the model in Campbell et al. (2008), using quarterly Compustat data. Then, 

quintile and decile portfolios are formed for each month based on failure probability in month 

t-1. All portfolio returns are value-weighted and obtained at both daily and monthly 

frequencies. Using daily portfolio returns, we estimate the co-moments of each portfolio as 

the sample moments during the period. The estimated co-moments and mean monthly returns 

of portfolios sorted on each of five characteristics are shown in Tables 8 to 12. For better 

understanding of economic significance, the values of estimated co-moments are represented 

in the units of corresponding moments of the market returns. We report systematic moments 

with the market returns in all cases, and report selected second- and third-order co-moments 

with respect to state variables that show clear and significant dispersed patterns in each case. 

Panel A and Panel B of Table 8 report size-sorted portfolio returns and co-moments 

during the pre- and post-1962 periods, respectively. Since we report only the value-weighted 

returns, the size effect is relatively weak and the zero-investment portfolio return based on a 

decile sort is marginally significant, with a t-statistic of -1.75 in the pre-1962 period, and 
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even insignificant in the post-1962 period.13 Nevertheless, returns across quintiles show clear 

decreasing patterns in both periods. On the other hand, consistent with the fact that the 

CAPM cannot explain the size premium, systematic variance β displays no clear pattern 

before 1962, and even an increasing pattern after 1962. Also, both systematic skewness γ and 

systematic kurtosis δ are not dispersed significantly. Not surprisingly, the size-sorted 

portfolios have very different levels of covariance with SMB, resulting in highly significant 

ηSMB on the zero-investment portfolios in both periods. Both ηSMB and ηHML clearly decrease 

from the smallest to the largest quintile, and this demonstrates why the Fama–French three-

factor model explains the size effect, given that the prices of SMB and HML are positive. 

Focusing on the third-order effects of state variables, κHML shows significant dispersion, but 

the negative direction of a premium on κHML worsens the size effect. The price of κTERM is 

also estimated to be significant in Section 3.3, but its pattern across the size quintile is not 

obvious. Overall, the size premium is well explained by the second-order co-moments with 

SMB and HML and not by the higher-order moments. 

For portfolios sorted on the book-to-market ratio shown in Table 9, the monthly value 

premiums are 0.41% (t-statistic=2.52) based on a quintile sort and 0.54% (t-statistic=2.47) 

based on a decile sort during the post-1962 period, while the value effect is much weaker 

during the pre-1962 period. However, systematic variance β displays a decreasing pattern 

across quintiles during the post-1962 period, while it increases during the pre-1962 period. 

This indicates that the value premium is made worse by the CAPM. Systematic skewness γ 

during the post-1962 period decreases from the lowest to the highest book-to-market quintile, 

yielding negative γ with a t-statistic of -2.12 on the zero-investment portfolio. Based on our 

empirical finding of the negative price of γ, the dispersion in systematic skewness seems to be 

a clue to the value premium. Dispersion in γ implies that the value stock earns a higher return 

than the growth stock as compensation for lower systematic skewness. Multiplying the spread 

in γ between the value and growth portfolios by the price of γ estimated from each 

specification in Table 6 yields an average monthly premium of 0.10% (0.12%) based on a 

quintile (decile) sort, which accounts for 25% (23%) of the average value premium during the 

                                           
13 The equal-weighted returns on the zero-investment portfolio based on size-sorted decile are -1.60% (t-
statistic=-2.56) and -0.54% (t-statistic=-2.08) per month during the pre- and post-1962 periods, respectively. 
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post-1962 period. For co-moments related to intertemporal hedging demands, both the 

covariances with SMB and HML show clear dispersion in the right direction. This is not 

surprising given the empirical success of the Fama–French three-factor model in explaining 

the value effect. 

Table 10 shows co-moments and returns of momentum portfolios. Harvey and Siddique 

(2000) suggest that the momentum effect is related to both systematic and total skewness. 

They document that past winners have substantially lower skewness than past losers, and 

argue that the strategy of buying the winner and selling the loser requires bearing 

substantially negative skewness.14 In results for the full sample period of 1926 to 2012 

(unreported), we find a clear relation between systematic skewness and returns, seemingly 

consistent with Harvey and Siddique (2000).15 The mean monthly return on the momentum 

strategy based on a decile sort is 1.07% (t-statistic=3.35) and systematic skewness on the 

same strategy is -3.33 in the unit of the market skewness (t-statistic=-2.65). However, our 

results of the sub-periods cast doubt on the argument of Harvey and Siddique (2000). 

Comparing Panel A and Panel B in Table 10, the momentum strategy earns a significantly 

high return only during the period 1962 to 2012. In contrast, the dispersion in γ is clear and 

significant in the period before 1962, while it becomes insignificant during the period of the 

high abnormal return. This is a somewhat surprising finding. Turning to the third-order 

effects of intertemporal hedging demands, the third-order co-moment with TERM, κTERM, 

generates a decreasing pattern from the loser to the winner and has a negative and significant 

value, with a t-statistic of -4.99, on the zero-investment portfolio. Given the finding in 

Section 3.3 that κTERM is negatively priced during the post-1962 period, which is interpreted 

as that high TERM stands for states of low risk aversion, the dispersion in κTERM implies that 

the winner tends to have low κTERM, or relatively high systematic risk in times of high risk 

aversion (low TERM), and that the loser tends to have high κTERM, or low systematic risk in 

times of high risk aversion. The difference in κTERM between the winner and loser portfolios 

multiplied by the estimated price of κTERM in Table 6 generates monthly premiums of 0.71% 

                                           
14 Strictly, this is true only when considering systematic skewness, which preserves the linear property. Due to 
the non-linearity of total skewness, the skewness of the long-short portfolio need not be the same as the 
difference in skewness between the long- and the short- legs. 
15 The results for the full sample period are available on request. 
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and 0.86% based on quintile and decile sorts, respectively. Remarkably, these figures amount 

to 107% and 59% of the average momentum premiums during the post-1962 period. 

Consequently, we interpret that a large part of the momentum profit is a reward for accepting 

higher systematic risk when the investor is more risk-averse. 

For the idiosyncratic volatility puzzle reported in Table 11, the abnormal return on the 

zero-investment portfolio is observed during the period after 1962. Though systematic 

variance, skewness, kurtosis, and covariance with SMB show significant dispersion across 

quintile portfolios, the directions of the dispersion indicate that including them in the asset 

pricing model makes even worse the idiosyncratic volatility puzzle. On the other hand, the 

covariance with HML, ηHML, decreases from the lowest to the highest idiosyncratic volatility 

quintile during the post-1962 period, and ηHML of the zero-investment portfolio based on a 

quintile sort has a t-statistic of -4.21. If we accept the positive price of ηHML as shown in 

numerous empirical studies, this implies that the low-volatility stock has higher covariance 

with HML, meaning that it earns high return when the marginal utility is low (or HML is 

high), than the high-volatility stock. Therefore, the abnormal return on the low-minus-high 

volatility strategy can be regarded as compensation for cyclical variations. 

Finally, Table 12 presents co-moments and returns of portfolios sorted on failure 

probability. Due to data availability, the portfolio return begins in September 1972. Focusing 

on the results in Panel A of the full period, we observe that the low return on the zero-

investment portfolio buying the high-failure-probability stocks and selling the low-failure-

probability stocks mainly comes from the highest failure probability portfolio. Overall 

patterns in co-moments indicate that the static version of three-moment CAPM and the 

Fama–French three-factor model, as well as the traditional CAPM, are not at all helpful in 

explaining the distress puzzle. For the third-order co-moment with TERM, κTERM increases 

from the lowest to the highest failure probability quintile, generating a positive and 

significant κTERM with a t-statistic of 2.59 on the zero-investment portfolio. The dispersion in 

κTERM between the lowest and the highest failure probability quintile, multiplied by the 

estimated price of κTERM in Table 6, yields a monthly premium of 0.55%, which makes up 82% 

of the average return difference between the lowest and highest quintiles. Like the 

momentum portfolio, we interpret that the low failure probability stock tends to have low 
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κTERM, or high systematic risk when relative risk aversion is high (low TERM), whereas the 

high failure probability stock has high κTERM, or low systematic risk when relative risk 

aversion is high. Therefore, the required return on the low failure probability stock is 

relatively higher to bear higher systematic risk in times of high risk aversion. 

To summarize, the cross-sectional implication of the four-moment ICAPM is that 

dispersion in higher-order co-moments, as well as dispersion in systematic risk, is related to 

difference in returns. We explore the relation between co-moment dispersion and returns 

based on several cross-sectional anomalies, and find evidence that abnormal returns on 

anomaly strategies can be explained partially by the risk-based story. Specifically, we find 

that the value stock has lower systematic skewness than the growth stock, the low-volatility 

stock has higher covariance with HML than the high-volatility stock, and the winner and the 

low-failure-probability stock have the third-order co-moment with TERM lower than the loser 

and the high-failure-probability stock. These findings indicate a direction for future research 

in that the cross-sectional anomalies could be explained by a risk-return-skewness trade-off. 

 

 

5. Conclusion 

Traditionally, most asset pricing theories have been developed based on only mean and 

variance of asset returns, despite the stylized fact that stock returns are both skewed and fat-

tailed. Based on preference for positive skewness and low kurtosis, several papers have taken 

the effect of higher-order moments into account in static asset pricing models, and find 

evidence that systematic skewness and kurtosis play a role in explaining the cross-section of 

stock returns. We extend the literature by incorporating the effect of stochastic investment 

opportunities as well as higher-order moments on expected stock returns, and by presenting a 

new estimation procedure to overcome the errors-in-variables problem that may lead to huge 

estimation errors in higher moment models. We propose a four-moment intertemporal asset 

pricing model that encompasses the traditional, three- and four-moment static CAPM and the 

intertemporal CAPM based on mean–variance optimization. In comparison with existing 

models, our model takes intertemporal hedging demands of the long-term investor into 
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account as well, and thereby further captures compensation for unfavorable changes in 

systematic risk and systematic skewness in expected returns. 

We also develop empirical support for the theoretical model using U.S. stock market data. 

With daily returns of individual stocks and various state variables as predictors for investment 

opportunities, we investigate whether co-moments in the derived asset pricing equation are 

priced in the cross-section. Based on both portfolio sorts and cross-sectional regressions, we 

find strong evidence that systematic skewness is negatively priced. Moreover, we find that 

the third-order co-moment with the market return and each state variable has a significantly 

negative price when the state variable predicts good states. We interpret this result as that 

such state variables, the term spread and the HML factor, are related to variations in risk 

aversion. However, most of the fourth-order co-moment premiums observed from univariate 

portfolio sorts disappear in the presence of systematic variance and systematic skewness. 

Based on the estimation result of the cross-sectional regressions, we further explore 

implications of the four-moment ICAPM for asset pricing anomalies. As a time-series 

implication, we examine relative risk aversion and relative prudence implied by the estimated 

models and confirm that there is a risk-return-skewness relation; at a given level of variance, 

there is a trade-off of expected returns and negative skewness. As a cross-sectional 

implication, we investigate whether dispersion in co-moments may be related to cross-

sectional patterns in stock returns for several well-known anomalies. The results suggest that, 

at least partially, the value premium can be a reward for bearing lower systematic skewness, 

and that the abnormal returns for strategies based on momentum and failure probability can 

be due to compensation for accepting higher systematic risk associated with high risk 

aversion. 

Overall, investors consistently prefer positive skewness and there is a significant relation 

of expected returns, risk, and skewness, while the evidence on kurtosis preference is not clear. 

Our findings provide a clue to future asset pricing research on the role of higher-order co-

moments in resolving unexplained anomalies.   
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Appendix A. Derivation of Equilibrium Expected Returns in Equation (6) 

 

Equation (5) can be rearranged as follows: 
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By substituting the preceding formulas into equation (A1), we obtain the equilibrium 

expected returns in equation (6).   
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Appendix B. Asymptotic Standard Errors of Two-Pass Cross-Sectional Regressions 

 

Following notation on the general GMM framework in Cochrane (2005), the estimated model 

can be represented as the following moment conditions. 
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where Rmt, zt, and Rt are excess returns of the market portfolio, state variables, and excess 

returns of N individual assets, and μm, μz, and μ are their expected values, respectively, and 

the vector of estimated parameters, b, is 
 [ ]0 1 2 3 4 5 61 (7 9)

 .m zN
b m m λλλλλλλ     

× +
′ ′ ′ ′ ′ ′ ′ ′= μ β γ δ η κ π  

 

Note that the first (2 + N) rows in gT(b) are included to recognize sampling variation induced 

by the fact that the mean of factors (market returns and state variables) and excess returns are 

estimated. The next 6N rows represent first-stage estimation of co-moments, and the last N 

rows represent second-stage cross-sectional regressions. 

The matrix that defines which moment conditions are set to zero is 
 

7 2 (7 2)(7 9) (8 2)

7 (7 2)

 ,N N NN N

N

a + + ×+ × +

× +

=  
 ′ 

I 0
0 θ

 

where ( )
7N×
=θ 1 β γ δ η κ π . 

The matrix of derivatives of the moment conditions with respect to the parameter is 
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and the covariance matrix of the gT(b) is [ ]( ) ( )
j

S E g b g b
∞

=−∞

′= ∑ . 

The asymptotic variance formula of the general GMM estimate in Cochrane (2005) is 
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The variance of the second-stage estimates, ( )0 1 2 3 4 5 6λλλλλλλ       ′=λ , is the 7x7 

lower-right block matrix of ˆvar( )b . It is obtained as follows: 

 ( ) ( )1 11ˆvar( )  ,
T

− −′ ′ ′= ⋅λ θ θ θ Ωθ θ θ  

where 
N N

ESE
×

′=Ω , 
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× + × × ×
=  
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I I I I I I I , and K1, K2, 

and K3 are defined as above. 

In calculating the matrix S, we assume the errors are i.i.d. and market returns and state 

variables are uncorrelated over time.  
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Table 1. Portfolios sorted on co-moments: Full sample period (1926–2012) 
This table reports mean of co-moments and mean monthly returns of portfolios sorted on co-moments of sample 
stocks. Annual co-moments are estimated as the sample moments using daily data of stock returns, market 
portfolio returns, and state variables. At the beginning of each year, we form quintile and decile portfolios sorted 
on each of the estimated co-moments, and monthly equal-weighted (EW) and value-weighted (VW) returns are 
calculated. β is covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis 
with the market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a 
state variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993). Each column of “1” to 
“5” indicates quintile portfolios in ascending order, and the column “5-1” (“10-1”) indicates a zero-investment 
portfolio that is long in the highest moment quintile (decile) and short in the lowest moment quintile (decile). 
The mean values of co-moments are shown in the units of corresponding moments of the market returns. The 
numbers in parentheses are t-statistics adjusted using Newey–West (1987) standard errors with 12 lags. The 
sample period is January 1926 to December 2012. 
 

  1 2 3 4 5 5-1 10-1 
β Mean 0.121  0.523  0.831  1.180  1.815  1.694  2.122  
 EW 0.706  0.968  1.166  1.384  1.897  1.191  1.613  
  (3.878) (4.697) (5.036) (4.984) (5.113) (4.958) (5.394) 
 VW 0.729  0.776  0.970  0.993  1.183  0.453  0.755  
  (5.702) (5.795) (5.744) (4.754) (3.758) (1.809) (2.357) 
γ Mean -8.515  -3.316  -1.414  0.840  5.158  13.673  18.308  
 EW 1.737  1.341  1.192  1.038  0.787  -0.950  -1.132  
  (5.438) (5.506) (5.684) (4.585) (2.798) (-5.448) (-5.355) 
 VW 1.274  1.159  1.037  0.871  0.509  -0.765  -0.968  
  (4.678) (5.874) (6.187) (4.672) (2.294) (-3.762) (-3.607) 
δ Mean 0.039  0.521  0.861  1.254  2.020  1.982  2.535  
 EW 0.689  1.027  1.160  1.386  1.855  1.167  1.494  
  (3.477) (5.018) (5.034) (5.107) (5.092) (5.208) (5.494) 
 VW 0.630  0.772  0.917  1.125  1.241  0.611  0.917  
  (4.402) (5.596) (5.357) (5.133) (3.876) (2.492) (2.865) 
ηDIV Mean -23.387  -6.997  -1.171  4.286  19.251  42.638  60.180  
 EW 1.227  1.252  1.201  1.207  1.227  0.000  0.105  
  (4.052) (5.835) (5.530) (5.234) (4.068) (0.000) (0.864) 
 VW 0.735  0.935  0.982  0.954  0.851  0.116  0.323  
  (2.976) (5.467) (5.717) (4.976) (3.332) (0.761) (1.945) 
κDIV Mean -8.987  -2.257  0.306  3.186  9.447  18.434  25.325  
 EW 1.281  1.268  1.217  1.222  1.134  -0.147  -0.217  
  (4.293) (5.823) (5.775) (5.221) (3.645) (-1.137) (-1.325) 
 VW 0.965  0.974  0.939  0.884  0.801  -0.164  -0.116  
  (4.325) (5.830) (5.694) (4.477) (3.086) (-0.996) (-0.554) 
πDIV Mean -8.580  -2.220  -0.137  1.838  7.093  15.673  22.472  
 EW 1.076  1.156  1.227  1.255  1.394  0.318  0.353  
  (3.812) (5.338) (5.745) (5.246) (4.410) (2.828) (2.467) 
 VW 0.603  0.826  0.984  0.993  1.016  0.413  0.626  
  (2.720) (5.068) (5.896) (5.015) (3.854) (2.699) (3.369) 

(continued) 
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Table 1. (continued) 
  1 2 3 4 5 5-1 10-1 

ηSMB Mean -1.482  1.031  2.644  6.028  8.647  10.129  13.187  
 EW 1.074  1.133  1.240  1.261  1.438  0.364  0.432  
  (4.576) (5.320) (5.805) (4.900) (3.881) (1.585) (1.483) 
 VW 0.957  0.945  1.014  0.898  0.740  -0.217  -0.257  
  (4.766) (5.898) (5.557) (3.723) (2.275) (-0.868) (-0.827) 
κSMB Mean -38.919  -12.849  -0.766  11.172  38.578  77.497  103.529  
 EW 1.466  1.328  1.227  1.104  0.972  -0.495  -0.552  
  (4.547) (5.639) (5.606) (4.910) (3.460) (-2.820) (-2.481) 
 VW 1.161  1.118  1.023  0.785  0.489  -0.672  -0.903  
  (4.407) (5.754) (6.022) (4.202) (1.995) (-3.538) (-3.841) 
πSMB Mean -1.636  0.026  0.909  2.169  4.817  6.453  8.959  
 EW 1.098  1.163  1.226  1.261  1.368  0.270  0.332  
  (4.357) (5.535) (5.318) (4.977) (4.056) (1.345) (1.366) 
 VW 0.848  0.948  1.007  0.996  0.802  -0.046  -0.223  
  (4.252) (5.969) (5.671) (4.509) (2.615) (-0.194) (-0.734) 
ηHML Mean -4.917  -1.179  0.483  2.071  5.963  10.880  14.665  
 EW 1.207  1.114  1.168  1.216  1.442  0.235  0.233  
  (4.340) (4.916) (5.134) (4.665) (4.414) (0.885) (0.707) 
 VW 0.859  0.837  0.969  1.077  1.097  0.239  0.127  
  (4.165) (5.216) (5.250) (4.851) (3.926) (0.961) (0.393) 
κHML Mean -20.141  -4.390  1.945  8.980  36.412  56.553  83.458  
 EW 1.252  1.195  1.152  1.213  1.299  0.047  0.073  
  (4.156) (5.329) (5.425) (5.055) (4.206) (0.263) (0.333) 
 VW 0.931  1.008  0.943  0.985  0.910  -0.021  -0.083  
  (3.985) (5.735) (5.601) (5.006) (3.556) (-0.108) (-0.320) 
πHML Mean -1.726  -0.495  0.101  0.735  1.884  3.611  4.861  
 EW 1.143  1.124  1.206  1.264  1.388  0.245  0.255  
  (4.053) (4.997) (5.223) (4.941) (4.406) (1.004) (0.851) 
 VW 0.776  0.804  0.970  1.057  1.122  0.346  0.385  
  (3.771) (5.008) (5.449) (4.847) (4.024) (1.439) (1.241) 
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Table 2. Portfolios sorted on co-moments: Pre-1962 period (1926–1961) 
This table reports mean of co-moments and mean monthly returns of portfolios sorted on co-moments of sample 
stocks. Annual co-moments are estimated as the sample moments using daily data of stock returns, market 
portfolio returns, and state variables. At the beginning of each year, we form quintile and decile portfolios sorted 
on each of the estimated co-moments, and monthly equal-weighted (EW) and value-weighted (VW) returns are 
calculated. β is covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis 
with the market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a 
state variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993). Each column of “1” to 
“5” indicates quintile portfolios in ascending order, and the column “5-1” (“10-1”) indicates a zero-investment 
portfolio that is long in the highest moment quintile (decile) and short in the lowest moment quintile (decile). 
The mean values of co-moments are shown in the units of corresponding moments of the market returns. The 
numbers in parentheses are t-statistics adjusted using Newey–West (1987) standard errors with 12 lags. The 
sample period is January 1926 to December 1961. 
 

  1 2 3 4 5 5-1 10-1 
β Mean 0.279  0.661  0.983  1.342  1.931  1.652  2.028  
 EW 0.774  1.009  1.235  1.462  2.027  1.253  1.628  
  (2.378) (2.578) (2.774) (2.704) (3.053) (3.267) (3.512) 
 VW 0.696  0.763  1.062  1.282  1.494  0.797  1.127  
  (2.882) (2.913) (3.054) (3.055) (2.523) (1.952) (2.081) 
γ Mean -2.848  -1.459  -0.765  -0.083  1.616  4.464  6.014  
 EW 1.863  1.405  1.226  1.106  0.901  -0.962  -1.114  
  (3.338) (2.984) (3.017) (2.453) (1.709) (-3.349) (-3.277) 
 VW 1.545  1.299  1.117  0.920  0.606  -0.939  -1.230  
  (3.350) (3.481) (3.482) (2.391) (1.426) (-2.600) (-2.706) 
δ Mean 0.226  0.671  1.025  1.421  2.130  1.905  2.390  
 EW 0.764  1.076  1.168  1.496  1.990  1.227  1.561  
  (2.144) (2.788) (2.612) (2.842) (3.026) (3.436) (3.722) 
 VW 0.645  0.750  0.974  1.415  1.491  0.847  1.174  
  (2.624) (2.795) (2.765) (3.216) (2.436) (1.974) (2.141) 
ηDIV Mean -24.019  -7.799  -1.525  3.892  17.385  41.404  58.361  
 EW 1.273  1.268  1.211  1.261  1.472  0.199  0.456  
  (2.421) (3.183) (2.820) (2.745) (2.545) (1.300) (2.271) 
 VW 0.863  0.889  1.018  1.111  1.150  0.287  0.539  
  (2.273) (2.953) (3.053) (2.863) (2.282) (1.115) (2.216) 
κDIV Mean -9.063  -2.364  0.288  3.106  9.571  18.634  25.915  
 EW 1.466  1.335  1.254  1.220  1.256  -0.211  -0.290  
  (2.812) (3.188) (3.052) (2.677) (2.153) (-1.117) (-1.099) 
 VW 1.073  1.017  0.952  0.915  1.095  0.022  0.044  
  (2.895) (3.386) (2.963) (2.320) (2.158) (0.082) (0.119) 
πDIV Mean -6.140  -1.720  0.099  1.840  5.704  11.844  16.408  
 EW 1.218  1.201  1.280  1.294  1.511  0.293  0.303  
  (2.439) (2.942) (3.062) (2.746) (2.525) (1.359) (1.121) 
 VW 0.823  0.878  1.045  1.169  1.129  0.305  0.637  
  (2.189) (3.019) (3.178) (2.910) (2.208) (1.107) (2.156) 

(continued) 
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Table 2. (continued) 
  1 2 3 4 5 5-1 10-1 

ηSMB Mean -1.562  0.842  2.342  7.682  7.989  9.550  12.618  
 EW 1.272  1.178  1.279  1.230  1.576  0.304  0.361  
  (2.775) (2.880) (3.128) (2.539) (2.408) (0.914) (0.837) 
 VW 1.116  0.898  0.981  0.991  1.004  -0.112  0.120  
  (2.760) (3.051) (3.099) (2.367) (1.895) (-0.340) (0.313) 
κSMB Mean -3.636  -1.293  -0.130  1.156  5.243  8.878  12.547  
 EW 1.524  1.372  1.289  1.123  1.186  -0.338  -0.268  
  (2.645) (3.094) (3.065) (2.524) (2.235) (-1.151) (-0.732) 
 VW 1.206  1.138  1.196  0.851  0.903  -0.303  -0.552  
  (2.427) (2.998) (3.669) (2.349) (2.197) (-0.936) (-1.406) 
πSMB Mean -1.646  0.161  1.189  2.512  5.001  6.646  8.772  
 EW 1.082  1.162  1.290  1.351  1.594  0.512  0.715  
  (2.338) (2.943) (2.847) (2.794) (2.620) (1.634) (1.872) 
 VW 0.843  1.031  1.126  1.157  1.232  0.390  0.416  
  (2.209) (3.271) (3.304) (2.772) (2.351) (1.190) (1.028) 
ηHML Mean -0.711  0.362  1.100  1.743  4.047  4.758  6.692  
 EW 0.825  1.040  1.317  1.443  1.910  1.085  1.409  
  (2.345) (2.686) (2.987) (2.676) (2.858) (2.750) (3.018) 
 VW 0.794  0.916  1.136  1.276  1.413  0.620  0.591  
  (2.720) (3.235) (3.035) (2.706) (2.414) (1.498) (1.162) 
κHML Mean -38.456  -8.562  4.062  18.289  77.145  115.601  170.565  
 EW 1.787  1.378  1.148  1.104  1.098  -0.689  -0.757  
  (3.284) (3.176) (2.770) (2.315) (1.997) (-2.358) (-2.147) 
 VW 1.420  1.254  0.991  0.915  0.856  -0.563  -0.620  
  (3.359) (3.671) (2.999) (2.320) (1.806) (-1.566) (-1.402) 
πHML Mean -0.444  0.382  0.807  1.286  2.235  2.679  3.591  
 EW 0.667  1.035  1.279  1.540  1.973  1.306  1.656  
  (1.720) (2.667) (2.850) (2.943) (3.088) (3.924) (4.141) 
 VW 0.531  0.766  1.177  1.415  1.494  0.962  1.368  
  (1.807) (2.682) (3.242) (3.134) (2.564) (2.476) (2.777) 
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Table 3. Portfolios sorted on co-moments: Post-1962 period (1962–2012) 
This table reports mean of co-moments and mean monthly returns of portfolios sorted on co-moments of sample 
stocks. Annual co-moments are estimated as the sample moments using daily data of stock returns, market 
portfolio returns, and state variables. At the beginning of each year, we form quintile and decile portfolios sorted 
on each of the estimated co-moments, and monthly equal-weighted (EW) and value-weighted (VW) returns are 
calculated. β is covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis 
with the market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a 
state variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993), the three-month T-bill 
rate (TB), and the term spread (TERM). Each column of “1” to “5” indicates quintile portfolios in ascending 
order, and the column “5-1” (“10-1”) indicates a zero-investment portfolio that is long in the highest moment 
quintile (decile) and short in the lowest moment quintile (decile). The mean values of co-moments are shown in 
the units of corresponding moments of the market returns. The numbers in parentheses are t-statistics adjusted 
using Newey–West (1987) standard errors with 12 lags. The sample period is January 1962 to December 2012. 
 

  1 2 3 4 5 5-1 10-1 
β Mean 0.009  0.426  0.724  1.065  1.733  1.723  2.188  
 EW 0.659  0.939  1.117  1.329  1.806  1.147  1.602  
  (3.145) (4.323) (4.677) (4.744) (4.259) (3.749) (4.116) 
 VW 0.753  0.785  0.905  0.789  0.963  0.210  0.492  
  (5.495) (5.805) (6.021) (4.078) (2.884) (0.677) (1.280) 
γ Mean -12.515  -4.626  -1.872  1.491  7.659  20.174  26.985  
 EW 1.648  1.295  1.168  0.989  0.707  -0.942  -1.145  
  (4.389) (5.208) (5.458) (4.534) (2.337) (-4.327) (-4.254) 
 VW 1.083  1.060  0.981  0.837  0.441  -0.643  -0.784  
  (3.299) (5.070) (5.589) (5.033) (1.904) (-2.754) (-2.418) 
δ Mean -0.093  0.415  0.745  1.136  1.943  2.036  2.638  
 EW 0.636  0.992  1.154  1.309  1.760  1.125  1.447  
  (2.817) (4.545) (4.929) (4.748) (4.275) (3.929) (4.070) 
 VW 0.620  0.787  0.877  0.921  1.064  0.444  0.736  
  (3.588) (5.581) (5.711) (4.504) (3.217) (1.557) (1.925) 
ηDIV Mean -22.940  -6.431  -0.921  4.564  20.569  43.509  61.465  
 EW 1.195  1.241  1.194  1.169  1.055  -0.140  -0.143  
  (3.327) (5.291) (5.613) (5.256) (3.396) (-1.316) (-1.022) 
 VW 0.644  0.968  0.957  0.843  0.639  -0.005  0.171  
  (1.985) (4.816) (5.452) (4.746) (2.597) (-0.027) (0.767) 
κDIV Mean -8.933  -2.181  0.320  3.242  9.360  18.293  24.909  
 EW 1.150  1.220  1.191  1.222  1.048  -0.102  -0.166  
  (3.287) (5.434) (5.607) (5.178) (3.135) (-0.581) (-0.796) 
 VW 0.888  0.944  0.930  0.862  0.593  -0.295  -0.230  
  (3.221) (4.945) (5.556) (4.542) (2.303) (-1.454) (-0.943) 
πDIV Mean -10.302  -2.573  -0.304  1.836  8.074  18.376  26.752  
 EW 0.975  1.124  1.189  1.228  1.312  0.336  0.388  
  (2.982) (4.863) (5.574) (5.199) (3.925) (2.867) (2.555) 
 VW 0.447  0.789  0.941  0.868  0.936  0.489  0.619  
  (1.675) (4.190) (5.679) (4.753) (3.504) (2.829) (2.593) 
ηSMB Mean -1.426  1.165  2.857  4.860  9.112  10.538  13.588  
 EW 0.935  1.101  1.213  1.283  1.340  0.405  0.483  
  (3.992) (4.995) (5.444) (4.668) (3.117) (1.297) (1.228) 
 VW 0.846  0.978  1.038  0.833  0.554  -0.292  -0.523  
  (4.468) (5.492) (4.773) (2.913) (1.359) (-0.815) (-1.162) 
κSMB Mean -63.825  -21.006  -1.216  18.242  62.109  125.933  167.751  
 EW 1.425  1.297  1.182  1.091  0.820  -0.605  -0.753  
  (3.854) (5.162) (5.241) (4.949) (2.763) (-2.828) (-2.745) 
 VW 1.129  1.104  0.900  0.738  0.197  -0.933  -1.152  
  (4.027) (5.658) (5.152) (3.857) (0.667) (-4.195) (-4.053) 
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Table 3. (continued) 

  1 2 3 4 5 5-1 10-1 
πSMB Mean -1.630  -0.070  0.711  1.926  4.687  6.317  9.091  
 EW 1.109  1.163  1.180  1.197  1.208  0.099  0.062  
  (3.972) (5.161) (5.163) (4.524) (3.177) (0.384) (0.200) 
 VW 0.851  0.890  0.923  0.882  0.498  -0.353  -0.674  
  (4.081) (5.718) (5.016) (3.782) (1.372) (-1.098) (-1.608) 
ηHML Mean -7.885  -2.267  0.047  2.303  7.316  15.201  20.293  
 EW 1.477  1.165  1.063  1.056  1.112  -0.365  -0.597  
  (3.699) (4.271) (4.603) (4.650) (3.882) (-1.102) (-1.445) 
 VW 0.904  0.780  0.850  0.936  0.874  -0.030  -0.201  
  (3.165) (4.175) (5.010) (5.247) (3.765) (-0.099) (-0.491) 
κHML Mean -7.214  -1.445  0.451  2.409  7.659  14.873  21.970  
 EW 0.874  1.065  1.155  1.290  1.441  0.567  0.660  
  (2.647) (4.686) (5.399) (5.555) (4.067) (2.889) (2.662) 
 VW 0.586  0.834  0.909  1.035  0.948  0.362  0.296  
  (2.311) (4.770) (5.401) (5.501) (3.386) (1.829) (0.975) 
πHML Mean -2.631  -1.113  -0.397  0.346  1.636  4.268  5.758  
 EW 1.480  1.186  1.155  1.069  0.976  -0.504  -0.734  
  (3.813) (4.423) (4.934) (4.692) (3.531) (-1.692) (-2.024) 
 VW 0.949  0.832  0.824  0.804  0.860  -0.090  -0.308  
  (3.374) (4.456) (5.139) (4.391) (3.717) (-0.313) (-0.842) 
ηTB Mean -25.865  -7.752  -1.177  5.647  22.131  47.996  67.391  
 EW 1.448  1.085  1.091  1.055  1.444  -0.004  -0.045  
  (3.146) (4.157) (5.081) (4.649) (4.005) (-0.008) (-0.068) 
 VW 0.849  0.824  0.896  0.970  0.887  0.038  -0.109  
  (2.252) (3.664) (4.709) (5.544) (3.141) (0.097) (-0.200) 
κTB Mean -6.909  -1.793  0.132  2.104  6.759  13.668  19.080  
 EW 1.151  1.221  1.151  1.141  1.162  0.010  0.034  
  (3.545) (5.420) (5.289) (4.687) (3.283) (0.053) (0.139) 
 VW 0.725  0.859  0.877  0.944  0.758  0.034  0.054  
  (2.746) (4.699) (5.223) (4.947) (2.616) (0.127) (0.156) 
πTB Mean -16.888  -4.992  1.182  6.098  19.557  36.446  50.753  
 EW 1.113  1.159  1.166  1.210  1.203  0.090  0.076  
  (3.070) (4.922) (5.361) (5.173) (3.515) (0.328) (0.217) 
 VW 0.749  0.926  0.929  0.873  0.718  -0.031  -0.269  
  (2.776) (4.838) (5.455) (4.503) (2.500) (-0.129) (-0.824) 
ηTERM Mean -13.807  -3.360  0.451  4.700  15.395  29.202  41.227  
 EW 1.574  1.088  1.044  1.068  1.361  -0.212  -0.284  
  (4.164) (4.652) (4.840) (4.226) (3.102) (-0.436) (-0.436) 
 VW 0.977  1.033  0.876  0.849  0.700  -0.277  -0.361  
  (3.297) (5.239) (4.793) (3.867) (1.967) (-0.672) (-0.620) 
κTERM Mean -7.307  -1.705  -0.221  1.296  5.930  13.237  19.502  
 EW 1.260  1.158  1.141  1.188  1.106  -0.154  -0.321  
  (3.507) (4.692) (5.327) (5.255) (3.482) (-0.756) (-1.255) 
 VW 0.797  0.952  0.908  0.819  0.644  -0.152  -0.304  
  (2.625) (4.710) (5.475) (4.629) (2.534) (-0.560) (-0.816) 
πTERM Mean -11.764  -4.099  0.030  3.526  12.977  24.741  34.147  
 EW 1.259  1.205  1.139  1.169  1.107  -0.152  -0.115  
  (3.692) (5.146) (5.294) (4.910) (3.032) (-0.540) (-0.320) 
 VW 0.784  0.882  0.929  0.958  0.726  -0.059  -0.019  
  (2.722) (4.493) (5.419) (5.026) (2.450) (-0.222) (-0.054) 
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Table 4. Cross-sectional regressions: Full sample period (1926–2012) 
This table reports estimates of market prices of co-moments using two-pass cross-sectional regressions. Annual 
co-moments are estimated as the sample moments using daily data of stock returns, market portfolio returns, and 
state variables for non-overlapping rolling windows. In the cross-section, we regress daily excess returns of 
stocks on the estimated co-moments, and time-series averages of the second-stage coefficients are reported. β is 
covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis with the 
market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a state 
variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993). The numbers in 
parentheses are t-statistics using Fama-MacBath standard errors, and the numbers in brackets are t-statistics 
using asymptotic standard errors corrected for estimation errors in the first stage. The sample period is January 
1926 to December 2012. 
 

State variables  Intercept β γ δ η κ π 
Static model 1 15.65  5.62            

  (9.04) (5.07)      
  [5.47] [4.70]      
 2 14.91  4.49  -603.90      
  (11.74) (3.74) (-4.41)     
  [7.53] [3.31] [-4.66]     
 3 14.20  4.00  -720.01  -5743.95     
  (15.65) (2.12) (-4.30) (-0.32)    
  [12.74] [2.03] [-4.23] [-0.32]       

DIV 4 14.87  5.69      -0.61      
  (12.89) (5.27)   (-2.11)   
  [8.90] [5.17]   [-1.53]   
 5 14.06  4.68  -617.56   -0.52  1.93   
  (15.84) (4.05) (-4.48)  (-1.99) (0.06)  
  [13.52] [3.96] [-4.72]  [-1.64] [0.06]  
 6 13.52  3.82  -720.43  -4544.78  -0.43  -2.53  -4073.30  
  (16.53) (2.00) (-4.09) (-0.22) (-1.53) (-0.07) (-1.00) 
  [15.55] [1.95] [-3.97] [-0.22] [-1.49] [-0.07] [-1.01] 

SMB 7 11.36  4.80      17.06      
  (11.93) (3.97)   (6.72)   
  [8.36] [3.85]   [6.08]   
 8 10.27  3.76  -600.08   14.36  -116.70   
  (14.17) (2.82) (-3.60)  (5.48) (-0.26)  
  [12.81] [2.63] [-3.59]  [5.13] [-0.23]  
 9 10.40  4.84  -677.70  -9522.91  13.63  -179.56  113314.40  
  (14.85) (2.34) (-3.28) (-0.45) (4.20) (-0.36) (1.65) 
  [13.30] [2.21] [-2.97] [-0.40] [3.93] [-0.31] [1.29] 

HML 10 15.85  3.01      2.70      
  (9.31) (2.14)   (0.99)   
  [5.55] [2.02]   [0.93]   
 11 14.07  1.66  -762.92   1.33  -551.97   
  (15.91) (1.10) (-4.02)  (0.47) (-1.24)  
  [12.04] [0.98] [-4.11]  [0.43] [-1.26]  
 12 13.42  1.70  -905.65  -25122.43  0.93  -476.35  82348.46  
  (17.01) (0.78) (-4.08) (-1.06) (0.28) (-1.00) (1.33) 
  [14.50] [0.74] [-3.92] [-1.00] [0.27] [-0.95] [1.23] 

(continued) 
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Table 4. (continued) 
 

State variables  Intercept β γ δ η κ π 
SMB + HML 13 11.38  3.42      16.61      

  (15.23) (2.21)   (6.33)   
  [12.97] [2.08]   [5.63]   
      3.99    
      (1.27)   
      [0.99]   
 14 10.54  1.98  -741.53   13.13  -190.42   
  (15.57) (1.21) (-3.47)  (4.93) (-0.41)  
  [14.18] [1.15] [-3.41]  [4.65] [-0.37]  
      3.66  -757.72   
      (1.26) (-1.66)  
      [1.14] [-1.63]  
 15 10.47  3.09  -833.35  -23582.27  12.67  -332.08  103897.10  
  (16.14) (1.31) (-3.22) (-0.88) (3.80) (-0.66) (1.46) 
  [14.69] [1.27] [-2.98] [-0.79] [3.59] [-0.55] [1.12] 
      3.07  -773.28  34997.18  
      (0.89) (-1.57) (0.52) 
      [0.85] [-1.46] [0.45] 
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Table 5. Cross-sectional regressions: Pre-1962 period (1926–1961) 
This table reports estimates of market prices of co-moments using two-pass cross-sectional regressions. Annual 
co-moments are estimated as the sample moments using daily data of stock returns, market portfolio returns, and 
state variables for non-overlapping rolling windows. In the cross-section, we regress daily excess returns of 
stocks on the estimated co-moments, and time-series averages of the second-stage coefficients are reported. β is 
covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis with the 
market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a state 
variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors by Fama and French (1993). The numbers in 
parentheses are t-statistics using Fama-MacBath standard errors, and the numbers in brackets are t-statistics 
using asymptotic standard errors corrected for estimation errors in the first stage. The sample period is January 
1926 to December 1961. 
 

State variables  Intercept β γ δ η κ π 
Static model 1 17.66  6.68            

  (10.22) (4.06)      
  [10.01] [4.20]      
 2 18.49  5.09  -645.53      
  (11.29) (2.80) (-2.91)     
  [10.86] [2.76] [-3.12]     
 3 18.37  4.42  -738.59  797.40     
  (11.50) (1.40) (-2.86) (0.03)    
  [11.28] [1.41] [-2.75] [0.03]       

DIV 4 17.88  6.66      -0.12      
  (10.81) (4.05)   (-0.57)   
  [10.58] [4.17]   [-0.56]   
 5 18.20  5.36  -634.89   -0.13  -12.42   
  (11.45) (2.95) (-2.92)  (-0.60) (-0.39)  
  [11.20] [2.88] [-3.11]  [-0.57] [-0.39]  
 6 17.56  3.68  -709.16  12746.43  -0.26  -5.27  420.44  
  (11.44) (1.17) (-2.70) (0.53) (-0.97) (-0.15) (0.10) 
  [11.26] [1.16] [-2.59] [0.53] [-0.92] [-0.15] [0.10] 

SMB 7 12.65  5.11      19.84      
  (8.39) (2.71)   (4.46)   
  [7.12] [2.62]   [3.98]   
 8 12.08  3.81  -727.77   16.99  -812.35   
  (8.60) (1.83) (-2.71)  (3.74) (-0.98)  
  [7.50] [1.77] [-2.84]  [3.57] [-0.95]  
 9 12.35  3.68  -948.22  8747.64  18.24  -989.66  -41279.96  
  (9.30) (1.07) (-3.03) (0.30) (3.18) (-1.12) (-0.42) 
  [8.36] [1.04] [-2.94] [0.30] [2.90] [-1.08] [-0.43] 

HML 10 18.10  1.75      2.33      
  (11.65) (0.75)   (0.59)   
  [11.13] [0.72]   [0.55]   
 11 17.70  0.20  -758.87   1.59  387.15   
  (11.94) (0.08) (-2.25)  (0.39) (0.57)  
  [11.18] [0.08] [-2.26]  [0.38] [0.57]  
 12 16.72  1.45  -933.87  -21600.41  0.47  261.76  75934.65  
  (11.85) (0.39) (-2.48) (-0.66) (0.09) (0.36) (0.93) 
  [11.72] [0.39] [-2.30] [-0.66] [0.09] [0.35] [0.96] 

(continued) 
 
 
  



- 50 - 

 

Table 5. (continued) 
 

State variables  Intercept β γ δ η κ π 
SMB + HML 13 13.65  1.54      17.19      

  (9.42) (0.61)   (3.83)   
  [8.00] [0.59]   [3.49]   
      0.38      
      (0.09)   
      [0.09]   
 14 12.71  -0.26  -732.65   13.37  -757.33   
  (9.54) (-0.10) (-2.03)  (2.91) (-0.90)  
  [8.43] [-0.09] [-2.00]  [2.76] [-0.88]  
      0.91  -203.11   
      (0.23) (-0.29)  
      [0.22] [-0.29]  
 15 12.64  0.48  -927.26  -8630.58  15.35  -1070.08  -39459.38  
  (9.91) (0.12) (-2.23) (-0.23) (2.63) (-1.19) (-0.38) 
  [8.79] [0.12] [-2.07] [-0.23] [2.45] [-1.14] [-0.39] 
      1.41  -210.02  55882.35  
      (0.28) (-0.28) (0.66) 
      [0.27] [-0.27] [0.68] 
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Table 6. Cross-sectional regressions: Post-1962 period (1962–2012) 
This table reports estimates of market prices of co-moments using two-pass cross-sectional regressions. Annual 
co-moments are estimated as the sample moments using daily data of stock returns, market portfolio returns, and 
state variables for non-overlapping rolling windows. In the cross-section, we regress daily excess returns of 
stocks on the estimated co-moments, and time-series averages of the second-stage coefficients are reported. β is 
covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis with the 
market returns. η is covariance with a state variable, κ is co-skewness with the market returns and a state 
variable, and π is co-kurtosis with the squared market returns and a state variable. State variables are the 
dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993), the three-month T-bill 
rate (TB), and the term spread (TERM). The numbers in parentheses are t-statistics using Fama-MacBath 
standard errors, and the numbers in brackets are t-statistics using asymptotic standard errors corrected for 
estimation errors in the first stage. The sample period is January 1962 to December 2012. 
 
State variables  Intercept β γ δ η κ π 

Static model 1 14.23  4.86            
  (5.29) (3.26)      
  [3.02] [2.86]      
 2 12.39  4.07  -574.52      
  (6.75) (2.54) (-3.32)     
  [3.92] [2.12] [-3.45]     
 3 11.25  3.71  -706.89  -10361.37     
  (10.61) (1.60) (-3.22) (-0.41)    
  [7.44] [1.47] [-3.21] [-0.40]       

DIV 4 12.74  5.00      -0.96      
  (8.04) (3.50)   (-2.04)   
  [4.92] [3.33]   [-1.44]   
 5 11.13  4.20  -605.33   -0.79  12.05   
  (10.95) (2.80) (-3.40)  (-1.90) (0.25)  
  [8.23] [2.74] [-3.56]  [-1.54] [0.23]  
 6 10.67  3.91  -728.39  -16750.33  -0.54  -0.60  -7245.35  
  (12.15) (1.64) (-3.08) (-0.56) (-1.25) (-0.01) (-1.15) 
  [10.74] [1.58] [-3.01] [-0.54] [-1.22] [-0.01] [-1.17] 

SMB 7 10.45  4.57      15.10      
  (8.51) (2.91)   (5.07)   
  [5.36] [2.82]   [4.65]   
 8 9.00  3.72  -509.94   12.51  374.34   
  (12.17) (2.15) (-2.41)  (4.01) (0.73)  
  [11.81] [1.95] [-2.31]  [3.69] [0.62]  
 9 9.03  5.66  -486.74  -22419.77  10.38  392.28  222439.83  
  (12.18) (2.21) (-1.77) (-0.76) (2.76) (0.69) (2.36) 
  [10.84] [2.04] [-1.54] [-0.64] [2.65] [0.52] [1.67] 

HML 10 14.26  3.90      2.95      
  (5.31) (2.24)   (0.79)   
  [3.01] [2.06]   [0.75]   
 11 11.50  2.68  -765.78   1.14  -1214.88   
  (10.60) (1.41) (-3.50)  (0.30) (-2.07)  
  [6.97] [1.18] [-3.65]  [0.26] [-2.12]  
 12 11.09  1.88  -885.72  -27608.57  1.25  -997.36  86875.85  
  (12.26) (0.71) (-3.28) (-0.83) (0.28) (-1.58) (0.98) 
  [9.12] [0.65] [-3.28] [-0.76] [0.27] [-1.48] [0.87] 

(continued) 
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Table 6. (continued) 
 
State variables  Intercept β γ δ η κ π 

SMB + HML 13 9.78  4.75      16.20      
  (12.85) (2.43)   (5.12)   
  [10.99] [2.24]   [4.45]   
      6.54      
      (1.44)   
      [1.06]   
 14 9.01  3.55  -747.79   12.96  209.75   
  (13.42) (1.72) (-2.87)  (4.07) (0.40)  
  [13.05] [1.64] [-2.81]  [3.82] [0.33]  
      5.60  -1149.21   
      (1.38) (-1.89)  
      [1.21] [-1.85]  
 15 8.93  4.93  -767.06  -34136.40  10.77  188.86  205089.91  
  (13.89) (1.71) (-2.32) (-0.91) (2.75) (0.33) (2.11) 
  [13.34] [1.64] [-2.15] [-0.79] [2.65] [0.24] [1.45] 
      4.24  -1170.88  20254.71  
      (0.90) (-1.78) (0.21) 
      [0.85] [-1.62] [0.17] 

TB 16 11.36  5.07      -8.19      
  (13.08) (3.60)   (-0.68)   
  [12.24] [3.43]   [-0.65]   
 17 10.69  3.76  -529.92   -5.65  265.12   
  (13.03) (2.49) (-3.06)  (-0.48) (0.20)  
  [12.23] [2.37] [-3.09]  [-0.45] [0.21]  
 18 10.46  3.05  -607.85  -6859.71  -2.49  -329.11  -155217.82  
  (12.94) (1.33) (-2.60) (-0.27) (-0.19) (-0.23) (-1.00) 
  [12.07] [1.28] [-2.39] [-0.24] [-0.17] [-0.24] [-1.00] 

TERM 19 13.39  5.00      -1.47      
  (8.02) (3.55)   (-0.18)   
  [3.96] [3.39]   [-0.11]   
 20 12.01  3.66  -586.34   -3.49  -2293.18   
  (9.21) (2.33) (-3.35)  (-0.48) (-2.50)  
  [4.80] [1.99] [-3.28]  [-0.32] [-2.40]  
 21 11.48  3.03  -589.51  439.66  -6.20  -2037.62  173255.17  
  (10.30) (1.32) (-2.47) (0.02) (-0.89) (-1.91) (1.22) 
  [5.81] [1.25] [-2.31] [0.02] [-0.66] [-1.80] [1.01] 
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Table 7. Implied parameters for relative risk aversion and relative prudence 
This table presents values of relative risk aversion (RRA) and relative prudence (RPR) parameters implied by estimates of the cross-sectional regressions 
reported in Tables 4–6. Implied RRA and RPR are obtained from the following asset pricing equation: 

2
2

1 1 1 1 1( )( ) ( )( )  ,
2

M M M Mt
t t ft t t t t t t t t t t t t t t

iE R R i E R R E R Rγ µµ  γ θ µµ + + + + +    − = ⋅ ⋅ − − − ⋅ ⋅ ⋅ − − +      

 

where γt is RRA, θt is RPR, it is the ratio of risky investments to the expected payoff of total investments in the next period, defined as 
{ }(1 ) M

t ft ti w w R wµ= − + , and w denotes the proportion of risky investments in total investments, Wt – Ct. To calculate it for given w, we use mean annual 

returns of the market portfolio and the risk-free asset during the sample period. RRA and RPR are calculated for each specification and varying values of w 
from 0.25 to 2. Panel A shows implied parameters from the full-period (1926–2012) estimation result, and Panel B and Panel C show results for the pre- and 
post-1962 periods, respectively. 
 

Panel A: Full sample period (1926-2012) 
State variables  w = 0.25 w = 0.5 w = 0.75 w = 1 w = 1.25 w = 1.5 w = 1.75 w = 2 

  RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR 
Static model 1 23.71   12.08   8.21   6.27   5.10   4.33   3.77   3.36   

 2 18.97  1135.36  9.66  578.46  6.56  392.83  5.01  300.01  4.08  244.32  3.46  207.19  3.02  180.68  2.69  160.79  
DIV 4 24.01   12.23   8.31   6.35   5.17   4.38   3.82   3.40   

 5 19.76  1114.37  10.07  567.77  6.84  385.57  5.22  294.46  4.25  239.80  3.61  203.36  3.15  177.34  2.80  157.81  
SMB 7 20.26   10.32   7.01   5.35   4.36   3.70   3.22   2.87   

 8 15.88  1347.91  8.09  686.75  5.49  466.37  4.20  356.18  3.42  290.06  2.90  245.98  2.53  214.50  2.25  190.89  
HML 10 12.70   6.47   4.40   3.36   2.73   2.32   2.02   1.80   

 11 6.99  3890.16  3.56  1982.02  2.42  1345.97  1.85  1027.95  1.51  837.13  1.28  709.93  1.11  619.06  0.99  550.91  
SMB + HML 13 14.44   7.36   5.00   3.82   3.11   2.64   2.30   2.05   

 14 8.35  3168.26  4.25  1614.21  2.89  1096.20  2.21  837.19  1.80  681.79  1.52  578.18  1.33  504.18  1.18  448.68  
(continued) 
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Table 7. (continued) 
 

Panel B: Pre-1962 period (1926-1961) 
State  w = 0.25 w = 0.5 w = 0.75 w = 1 w = 1.25 w = 1.5 w = 1.75 w = 2 

variables  RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR 
Static model 1 27.82   14.29   9.77   7.52   6.17   5.26   4.62   4.13   

 2 21.21  1055.11  10.89  541.79  7.45  370.68  5.73  285.12  4.70  233.79  4.01  199.57  3.52  175.13  3.15  156.79  
DIV 4 27.75   14.25   9.75   7.50   6.15   5.25   4.61   4.12   

 5 22.32  986.11  11.46  506.35  7.84  346.44  6.03  266.48  4.95  218.50  4.22  186.52  3.71  163.67  3.32  146.54  
SMB 7 21.29   10.93   7.48   5.75   4.72   4.03   3.53   3.16   

 8 15.88  1589.47  8.15  816.17  5.58  558.41  4.29  429.52  3.52  352.19  3.00  300.64  2.63  263.82  2.36  236.20  
HML 10 7.29   3.74   2.56   1.97   1.62   1.38   1.21   1.08   

 11 0.84  31239.66  0.43  16041.17  0.30  10975.00  0.23  8441.92  0.19  6922.07  0.16  5908.84  0.14  5185.10  0.13  4642.30  
SMB + HML 13 6.39    3.28    2.25    1.73    1.42    1.21    1.06    0.95    

Panel C: Post-1962 period (1962-2012) 
State  w = 0.25 w = 0.5 w = 0.75 w = 1 w = 1.25 w = 1.5 w = 1.75 w = 2 

variables  RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR RRA RPR 
Static model 1 20.74   10.51   7.10   5.39   4.37   3.69   3.20   2.84   

 2 17.34  1204.87  8.79  610.56  5.94  412.46  4.51  313.41  3.66  253.98  3.09  214.36  2.68  186.05  2.37  164.83  
DIV 4 21.31   10.80   7.29   5.54   4.49   3.79   3.29   2.92   

 5 17.91  1229.36  9.08  622.97  6.13  420.84  4.66  319.78  3.78  259.14  3.19  218.71  2.77  189.84  2.45  168.18  
SMB 7 19.51   9.88   6.68   5.07   4.11   3.47   3.01   2.67   

 8 15.87  1168.37  8.04  592.07  5.43  399.96  4.13  303.91  3.35  246.28  2.82  207.86  2.45  180.42  2.17  159.84  
HML 10 16.62   8.42   5.69   4.32   3.50   2.96   2.57   2.27   

 11 11.44  2434.63  5.80  1233.74  3.92  833.44  2.98  633.29  2.41  513.20  2.04  433.14  1.77  375.95  1.57  333.06  
SMB + HML 13 20.26   10.27   6.94   5.27   4.27   3.60   3.13   2.77   

 14 15.15  1795.03  7.68  909.62  5.19  614.48  3.94  466.92  3.19  378.38  2.70  319.35  2.34  277.19  2.07  245.56  
TB 16 21.61   10.95   7.40   5.62   4.56   3.85   3.34   2.96   

 17 16.01  1203.52  8.12  609.88  5.48  412.00  4.17  313.06  3.38  253.69  2.85  214.12  2.47  185.85  2.19  164.64  
TERM 19 21.33   10.81   7.30   5.55   4.50   3.79   3.29   2.92   

 20 15.59  1367.72  7.90  693.08  5.34  468.21  4.06  355.77  3.29  288.30  2.77  243.33  2.41  211.20  2.13  187.11  
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Table 8. Co-moments and returns of portfolios sorted on firm-size 
This table reports estimated co-moments and mean monthly returns of portfolios sorted on firm size. Daily and 
monthly value-weighted returns on quintile and decile portfolios based on firm size are obtained from the 
Kenneth French’s website. Co-moments of each portfolio are estimated as the sample moments using daily 
portfolio returns, market portfolio returns, and state variables. β is covariance with the market returns, γ is co-
skewness with the market returns, and δ is co-kurtosis with the market returns. η is covariance with a state 
variable, and κ is co-skewness with the market returns and a state variable. State variables are the dividend yield 
(DIV), size (SMB) and value (HML) factors of Fama and French (1993), the three-month T-bill rate (TB), and the 
term spread (TERM). Each column of “1” to “5” indicates quintile portfolios in ascending order, and the column 
“5-1” (“10-1”) indicates a zero-investment portfolio that is long in the largest size quintile (decile) and short in 
the smallest size quintile (decile). The values of co-moments are shown in the units of corresponding moments 
of the market returns. The numbers in parentheses are t-statistics adjusted using Newey–West (1987) standard 
errors. Panel A shows results for the period July 1926 to December 1961, and Panel B shows results for the 
period January 1962 to December 2012. 

Panel A: Pre-1962 period (1926.07-1961.12) 
 1 2 3 4 5 5-1 10-1 

Return 1.575  1.414  1.309  1.158  0.977  -0.598  -0.888  
 (2.432) (2.701) (2.842) (2.807) (2.951) (-1.485) (-1.751) 
β 0.975  1.004  1.028  1.043  0.986  0.011  0.068  
 (13.138) (12.956) (13.532) (12.973) (13.037) (0.277) (1.466) 
γ -0.027  0.863  0.470  0.898  1.115  1.142  1.165  
 (-0.012) (0.340) (0.217) (0.390) (0.629) (1.140) (0.953) 
δ 0.941  1.058  1.024  1.083  0.978  0.038  0.089  
 (3.758) (3.368) (3.772) (3.581) (3.719) (0.390) (0.819) 

ηDIV 0.029  0.824  0.931  1.309  0.950  0.921  1.124  
 (0.032) (0.676) (0.928) (1.205) (1.120) (2.340) (2.323) 

ηSMB 1.836  1.157  0.430  -0.291  -1.195  -3.031  -3.305  
 (6.176) (5.172) (2.107) (-1.413) (-5.510) (-10.482) (-10.050) 

κSMB 0.195  -0.227  -0.493  -0.740  -1.045  -1.240  -1.580  
 (0.259) (-0.385) (-0.966) (-1.464) (-2.139) (-2.179) (-2.214) 

ηHML 1.423  1.314  1.241  1.211  0.950  -0.472  -0.466  
 (10.997) (10.817) (10.958) (10.757) (10.332) (-6.882) (-5.689) 

Panel B: Post-1962 period (1962.01-2012.12) 
 1 2 3 4 5 5-1 10-1 

Return 1.107  1.109  1.076  1.019  0.821  -0.287  -0.339  
 (3.958) (4.737) (4.952) (4.922) (4.354) (-1.349) (-1.383) 
β 0.811  0.945  0.941  0.969  1.011  0.200  0.324  
 (14.605) (15.624) (15.711) (15.150) (15.278) (8.657) (11.878) 
γ -1.055  -0.994  -0.966  -0.997  -1.014  0.041  0.078  
 (-2.048) (-1.776) (-1.618) (-1.445) (-1.169) (0.107) (0.180) 
δ 0.749  0.836  0.859  0.944  1.043  0.294  0.388  
 (2.635) (2.660) (2.557) (2.430) (2.205) (1.502) (1.761) 

ηDIV -26.716  -13.818  -9.410  -6.278  4.620  31.337  38.659  
 (-2.402) (-1.147) (-0.841) (-0.553) (0.389) (4.410) (4.728) 

ηSMB 2.518  2.206  1.275  0.187  -1.910  -4.428  -4.531  
 (12.872) (11.705) (7.517) (1.016) (-6.946) (-14.129) (-13.092) 

ηHML -0.515  -0.772  -0.875  -0.863  -1.052  -0.537  -0.657  
 (-3.913) (-5.418) (-6.346) (-6.419) (-8.348) (-9.869) (-10.473) 

κHML 0.032  -0.484  -0.693  -0.893  -1.094  -1.125  -1.347  
 (0.028) (-0.426) (-0.624) (-0.767) (-0.891) (-2.819) (-2.862) 

ηTB -1.563  -1.330  -1.292  -1.141  -0.861  0.702  0.859  
 (-2.472) (-2.083) (-2.133) (-1.941) (-1.654) (2.165) (2.414) 

κTB -1.246  -1.391  -1.228  -1.144  -0.883  0.363  0.106  
 (-5.218) (-5.421) (-5.052) (-4.575) (-3.701) (5.278) (1.319) 

ηTERM 1.491  1.358  1.330  1.194  0.883  -0.608  -0.705  
 (3.137) (2.893) (3.015) (2.832) (2.441) (-2.223) (-2.329) 

κTERM 1.002  1.184  1.098  1.111  0.979  -0.023  0.252  
 (3.759) (4.065) (3.854) (3.692) (3.185) (-0.210) (1.929) 
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Table 9. Co-moments and returns of portfolios sorted on book-to-market ratio 
This table reports estimated co-moments and mean monthly returns of portfolios sorted on book-to-market ratio. 
Daily and monthly value-weighted returns on quintile and decile portfolios based on book-to-market ratio are 
obtained from the Kenneth French’s website. Co-moments of each portfolio are estimated as the sample 
moments using daily portfolio returns, market portfolio returns, and state variables. β is covariance with the 
market returns, γ is co-skewness with the market returns, and δ is co-kurtosis with the market returns. η is 
covariance with a state variable, and κ is co-skewness with the market returns and a state variable. State 
variables are the dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993), the 
three-month T-bill rate (TB), and the term spread (TERM). Each column of “1” to “5” indicates quintile 
portfolios in ascending order, and the column “5-1” (“10-1”) indicates a zero-investment portfolio that is long in 
the highest book-to-market quintile (decile) and short in the lowest book-to-market quintile (decile). The values 
of co-moments are shown in the units of corresponding moments of the market returns. The numbers in 
parentheses are t-statistics adjusted using Newey–West (1987) standard errors. Panel A shows results for the 
period July 1926 to December 1961, and Panel B shows results for the period January 1962 to December 2012. 
 

Panel A: Pre-1962 period (1926.07-1961.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.973  0.929  1.109  1.190  1.394  0.421  0.517  
 (2.941) (2.728) (2.716) (2.544) (2.578) (1.337) (1.197) 
β 0.997  0.947  1.029  1.221  1.372  0.375  0.512  
 (12.590) (12.658) (12.372) (13.521) (14.926) (10.205) (10.291) 
γ 0.639  0.810  2.049  2.616  1.593  0.954  0.869  
 (0.345) (0.473) (0.904) (1.051) (0.642) (1.001) (0.652) 
δ 0.999  0.952  1.111  1.208  1.238  0.239  0.373  
 (3.534) (3.772) (3.592) (3.836) (3.916) (1.949) (2.251) 

ηSMB -1.092  -0.956  -1.146  -1.197  -0.585  0.507  1.048  
 (-5.203) (-4.551) (-4.800) (-4.297) (-2.358) (4.076) (5.205) 

ηHML 0.830  0.896  1.180  1.652  2.117  1.287  1.617  
 (9.411) (9.893) (10.145) (11.465) (13.316) (15.616) (15.444) 

Panel B: Post-1962 period (1962.01-2012.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.804  0.899  0.931  1.062  1.217  0.413  0.539  
 (3.813) (4.757) (5.098) (5.596) (5.985) (2.517) (2.469) 
β 1.054  0.954  0.928  0.898  0.944  -0.110  -0.095  
 (16.436) (14.952) (14.223) (13.377) (14.226) (-5.322) (-3.624) 
γ -0.891  -1.058  -0.962  -1.115  -1.153  -0.262  -0.315  
 (-1.158) (-1.255) (-1.265) (-1.382) (-1.460) (-2.115) (-1.914) 
δ 0.992  0.995  0.976  0.998  0.980  -0.012  -0.022  
 (2.305) (2.183) (2.335) (2.251) (2.316) (-0.409) (-0.554) 

ηSMB -1.341  -1.228  -1.028  -1.008  -0.644  0.697  1.113  
 (-6.125) (-5.403) (-5.312) (-3.917) (-2.771) (8.686) (10.961) 

κSMB 0.365  1.912  1.091  1.983  2.607  2.241  2.818  
 (0.052) (0.249) (0.157) (0.268) (0.367) (3.042) (3.123) 

ηHML -1.661  -0.870  -0.437  0.012  0.203  1.865  2.120  
 (-12.392) (-7.891) (-3.501) (0.089) (1.450) (19.654) (18.684) 

κTB -0.714  -0.880  -1.152  -1.273  -1.441  -0.726  -0.885  
 (-3.250) (-3.745) (-4.466) (-4.617) (-5.221) (-8.629) (-7.902) 

κTERM 0.758  1.024  1.224  1.404  1.534  0.776  0.995  
 (2.577) (3.389) (4.026) (4.429) (4.834) (8.117) (7.868) 
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Table 10. Co-moments and returns of momentum portfolios 
This table reports estimated co-moments and mean monthly returns of momentum portfolios. At the beginning 
of each month t, we form quintile and decile portfolios sorted on prior returns in months t-7 to t-2, then monthly 
and daily value-weighted returns are calculated. Co-moments of each portfolio are estimated as the sample 
moments using daily portfolio returns, market portfolio returns, and state variables. β is covariance with the 
market returns, γ is co-skewness with the market returns, and δ is co-kurtosis with the market returns. η is 
covariance with a state variable, and κ is co-skewness with the market returns and a state variable. State 
variables are the dividend yield (DIV), size (SMB) and value (HML) factors of Fama and French (1993), the 
three-month T-bill rate (TB), and the term spread (TERM). Each column of “1” to “5” indicates quintile 
portfolios in ascending order, and the column “5-1” (“10-1”) indicates zero-investment portfolio that is long in 
the highest prior return quintile (decile) and short in the lowest prior return quintile (decile). The values of co-
moments are shown in the units of corresponding moments of the market returns. The numbers in parentheses 
are t-statistics adjusted using Newey–West (1987) standard errors. Panel A shows results of the period August 
1926 to December 1961, and Panel B shows results of the period January 1962 to December 2012. 
 

Panel A: Pre-1962 period (1926.08-1961.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.887  0.997  1.006  1.097  1.299  0.412  0.517  
 (1.740) (2.120) (2.591) (3.321) (3.433) (0.990) (0.900) 
β 1.241  1.118  1.052  1.009  1.080  -0.161  -0.166  
 (12.669) (12.463) (13.144) (13.696) (12.727) (-2.982) (-2.367) 
γ 3.136  2.325  1.839  0.635  0.039  -3.097  -3.766  
 (1.251) (1.111) (0.894) (0.377) (0.020) (-2.836) (-2.617) 
δ 1.275  1.159  1.064  0.945  1.031  -0.245  -0.304  
 (3.867) (3.872) (3.831) (4.029) (3.549) (-2.505) (-2.245) 

κDIV 1.451  1.145  1.140  0.880  0.996  -0.455  -0.502  
 (1.390) (1.390) (1.294) (1.343) (1.209) (-1.876) (-1.776) 

κHML 1.707  1.492  1.182  0.766  0.716  -0.991  -1.196  
 (2.380) (2.456) (2.003) (1.711) (1.380) (-2.692) (-2.306) 

Panel B: Post-1962 period (1962.01-2012.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.414  0.831  0.892  0.899  1.079  0.665  1.449  
 (1.319) (3.694) (4.904) (4.921) (4.631) (2.724) (4.114) 
β 1.247  1.049  0.959  0.953  1.096  -0.151  -0.164  
 (14.454) (15.165) (14.859) (15.060) (16.463) (-3.221) (-2.997) 
γ -0.877  -0.778  -0.821  -1.032  -1.242  -0.365  -0.262  
 (-1.254) (-1.190) (-1.111) (-1.227) (-1.453) (-1.331) (-0.748) 
δ 1.141  0.980  0.975  0.990  1.031  -0.110  -0.129  
 (2.887) (2.680) (2.388) (2.164) (2.192) (-0.857) (-0.962) 

ηHML -1.045  -0.858  -0.782  -0.850  -1.437  -0.392  -0.691  
 (-4.215) (-4.909) (-6.087) (-7.642) (-9.303) (-1.977) (-2.749) 

ηTB -1.879  -1.203  -1.071  -0.970  -0.868  1.012  1.457  
 (-2.297) (-1.987) (-1.976) (-1.763) (-1.336) (1.581) (1.806) 

κTB -1.815  -1.324  -1.053  -0.839  -0.781  1.035  1.240  
 (-4.817) (-4.486) (-4.178) (-3.664) (-3.537) (4.933) (5.138) 

ηTERM 1.691  1.328  1.086  0.888  0.631  -1.060  -1.392  
 (3.020) (3.225) (2.873) (2.251) (1.299) (-2.350) (-2.435) 

κTERM 1.704  1.266  1.092  0.911  0.675  -1.029  -1.247  
 (4.278) (3.891) (3.641) (3.057) (2.153) (-4.690) (-4.986) 
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Table 11. Co-moments and returns of portfolios sorted on idiosyncratic volatility 
This table reports estimated co-moments and mean monthly returns of portfolios sorted on idiosyncratic 
volatility. Following Ang et al. (2006), we define idiosyncratic volatility of a stock for month t as the standard 
deviation of residuals from regression of daily excess returns during the month t on the Fama–French three 
factors. At the beginning of each month t, we form quintile and decile portfolios sorted on idiosyncratic 
volatility in month t-1, then monthly and daily value-weighted returns are calculated. Co-moments of each 
portfolio are estimated as the sample moments using daily portfolio returns, market portfolio returns, and state 
variables. β is covariance with the market returns, γ is co-skewness with the market returns, and δ is co-kurtosis 
with the market returns. η is covariance with a state variable, and κ is co-skewness with the market returns and a 
state variable. State variables are the dividend yield (DIV), size (SMB) and value (HML) factors of Fama and 
French (1993), the three-month T-bill rate (TB), and the term spread (TERM). Each column of “1” to “5” 
indicates quintile portfolios in ascending order, and the column “5-1” (“10-1”) indicates a zero-investment 
portfolio that is long in the highest idiosyncratic volatility quintile (decile) and short in the lowest idiosyncratic 
volatility quintile (decile). The values of co-moments are shown in the units of corresponding moments of the 
market returns. The numbers in parentheses are t-statistics adjusted using Newey–West (1987) standard errors. 
Panel A shows results of the period August 1926 to December 1961, and Panel B shows results of the period 
January 1962 to December 2012. 
 

Panel A: Pre-1962 period (1926.08-1961.12) 
 1 2 3 4 5 5-1 10-1 

Return 1.038  1.075  1.063  1.046  0.901  -0.137  -0.120  
 (3.276) (2.691) (2.382) (2.184) (1.849) (-0.480) (-0.320) 
β 0.919  1.135  1.194  1.122  1.024  0.105  0.089  
 (13.116) (12.791) (12.832) (12.522) (10.930) (1.745) (1.025) 
γ 1.094  1.241  1.513  1.329  0.221  -0.873  -0.495  
 (0.654) (0.569) (0.615) (0.514) (0.105) (-0.723) (-0.264) 
δ 0.909  1.158  1.246  1.203  0.955  0.045  -0.091  
 (3.768) (3.886) (3.529) (3.222) (3.359) (0.463) (-0.567) 

ηSMB -1.175  -1.016  -0.559  0.285  0.691  1.866  1.998  
 (-5.650) (-4.162) (-2.352) (1.244) (1.979) (5.848) (4.110) 

ηHML 0.875  1.229  1.327  1.307  1.196  0.322  0.389  
 (10.224) (10.332) (10.623) (10.679) (9.493) (3.740) (2.975) 

Panel B: Post-1962 period (1962.01-2012.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.875  0.927  0.997  0.678  0.011  -0.864  -1.244  
 (5.232) (4.487) (3.973) (2.109) (0.029) (-2.621) (-3.261) 
β 0.866  1.068  1.241  1.394  1.372  0.506  0.484  
 (14.752) (15.405) (15.572) (15.280) (14.587) (10.480) (9.720) 
γ -0.937  -1.039  -1.152  -1.071  -1.144  -0.207  -0.518  
 (-1.177) (-1.345) (-1.350) (-1.347) (-1.529) (-0.853) (-2.280) 
δ 0.928  1.034  1.172  1.261  1.249  0.321  0.357  
 (2.146) (2.435) (2.470) (2.738) (2.915) (2.856) (3.840) 

ηDIV 2.417  2.199  -3.023  -2.513  -32.631  -35.047  -44.188  
 (0.228) (0.187) (-0.216) (-0.141) (-1.840) (-3.096) (-3.303) 

κDIV -0.406  -1.596  -2.659  -2.933  -3.439  -3.033  -3.217  
 (-0.207) (-0.834) (-1.192) (-1.043) (-1.273) (-2.619) (-2.520) 

ηSMB -1.722  -0.854  0.106  1.264  2.148  3.870  4.145  
 (-6.962) (-4.206) (0.459) (4.707) (7.469) (12.620) (12.826) 

ηHML -0.717  -0.961  -1.402  -1.712  -1.634  -0.916  -0.849  
 (-7.437) (-6.439) (-6.941) (-6.217) (-5.681) (-4.214) (-3.726) 

ηTB -0.792  -0.841  -1.206  -1.668  -2.700  -1.907  -2.642  
 (-1.762) (-1.453) (-1.719) (-1.974) (-2.885) (-3.000) (-3.545) 

κTB -0.888  -1.260  -1.446  -1.694  -1.753  -0.866  -0.769  
 (-4.235) (-4.577) (-4.649) (-4.637) (-4.441) (-4.159) (-3.382) 

ηTERM 0.856  0.934  1.181  1.407  1.930  1.075  1.247  
 (2.644) (2.321) (2.357) (2.314) (2.786) (2.145) (2.094) 
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Table 12. Co-moments and returns of portfolios sorted on failure probability 
This table reports estimated co-moments and mean monthly returns of portfolios sorted on failure probability. 
We construct a monthly measure of failure probability of each stock following the model in Campbell et al. 
(2008), using quarterly Compustat data. At the beginning of each month t, we form quintile and decile portfolios 
sorted on the failure probability in month t-1, then monthly and daily value-weighted returns are calculated. Co-
moments of each portfolio are estimated as the sample moments using daily portfolio returns, market portfolio 
returns, and state variables. β is covariance with the market returns, γ is co-skewness with the market returns, 
and δ is co-kurtosis with the market returns. η is covariance with a state variable, and κ is co-skewness with the 
market returns and a state variable. State variables are the dividend yield (DIV), size (SMB) and value (HML) 
factors of Fama and French (1993), the three-month T-bill rate (TB), and the term spread (TERM). Each column 
of “1” to “5” indicates quintile portfolios in ascending order, and the column “5-1” (“10-1”) indicates a zero-
investment portfolio that is long in the highest failure probability quintile (decile) and short in the lowest failure 
probability quintile (decile). The values of co-moments are shown in the units of corresponding moments of the 
market returns. The numbers in parentheses are t-statistics adjusted using Newey–West (1987) standard errors. 
The results cover the period September 1972 to December 2012. 
 

Post-1972 period (1972.09-2012.12) 
 1 2 3 4 5 5-1 10-1 

Return 0.994  0.993  0.954  0.953  0.319  -0.675  -0.776  
 (5.019) (4.479) (3.664) (2.884) (0.673) (-1.772) (-1.868) 
β 0.916  0.988  1.122  1.294  1.413  0.497  0.460  
 (14.094) (14.131) (13.893) (13.611) (13.433) (7.758) (6.756) 
γ -1.075  -0.957  -0.937  -0.920  -0.949  0.126  0.400  
 (-1.239) (-1.210) (-1.279) (-1.187) (-1.476) (0.284) (0.566) 
δ 0.958  0.994  1.072  1.199  1.187  0.228  0.113  
 (2.004) (2.241) (2.532) (2.717) (3.287) (1.173) (0.357) 

ηDIV 2.045  0.229  0.532  1.905  -0.628  -2.672  -6.178  
 (1.267) (0.138) (0.271) (0.828) (-0.222) (-1.263) (-2.327) 

κDIV -0.680  -0.874  -1.235  -1.657  -1.963  -1.282  -1.421  
 (-1.842) (-2.299) (-2.820) (-3.186) (-3.151) (-3.318) (-3.406) 

ηSMB -1.321  -1.208  -0.893  -0.394  0.817  2.138  2.405  
 (-5.866) (-6.325) (-4.803) (-1.942) (3.553) (7.336) (6.653) 

ηTB -0.821  -0.936  -1.085  -1.127  -1.832  -1.011  -1.534  
 (-1.380) (-1.449) (-1.474) (-1.283) (-1.659) (-1.260) (-1.690) 

κTB -0.677  -0.939  -1.415  -1.870  -2.063  -1.385  -1.292  
 (-3.780) (-4.329) (-5.070) (-5.463) (-5.251) (-5.623) (-5.091) 

ηTERM 0.750  0.861  1.217  1.390  1.866  1.116  1.140  
 (1.720) (1.828) (2.239) (2.182) (2.380) (1.928) (1.704) 

κTERM 0.743  0.955  1.417  1.807  1.683  0.940  0.613  
 (1.998) (2.416) (3.052) (3.344) (2.817) (2.587) (1.599) 

 
 
 


